Skip to main content

Subaerial Microbial Mats and Their Effects on Soil and Rock

  • Chapter
Microbial Sediments

Abstract

Microbial mats (or biofilms) under permanent water cover contain 95–98% biologically stabilised water at ambient temperature, while biofilms in atmospheric environments can be regarded as the maximum biomass maintaining metabolic potential in the presence of the minimum amount of water. Rock or other subaerial biofilms are made up primarily of poikilotroph micro-or-ganisms which thrive on the lowest water activity possible. Biofilms on and in rocks are the main factors in rock decay and the production of patinas, films, varnishes, crusts and stromatolites growing on and in rocks. A poikilotroph microflora is instrumental in maintaining life in truly extreme conditions and over considerable periods of time. The importance of the activity of the rock-dwelling biota and biofilms can be explained in terms of the fractal dimension of the reactive surface of sediment and rock with water and atmosphere, respectively. The weight of the living (mainly microbial) biomass of the planet is recalculated to be 1021 g instead of 1017 g, by including estimates of deep sedimentary and deep rock microbial biospheres. Poikilotroph biofilms under subaerial conditions are involved in both rock-destroying and rock-forming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Braams J (1992) Ecological studies on the fungal microflora inhabiting historical sandstone monuments. PhD Thesis, Oldenburg

    Google Scholar 

  • Characklis WG, Marshall KC (eds) (1990) Biofilms. Wiley, New York

    Google Scholar 

  • Cloud PE (1942) Notes on stromatolites. Amer J Sci 240, 363–379

    Article  Google Scholar 

  • Cooke, RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Cunningham AB, Bouwer EJ, Characklis WG (1990) Biofilms in porous media. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 697–732

    Google Scholar 

  • DeWinder B (1990) Ecophysiological strategies of drought-tolerant phototrophic micro-organisms in dune soils. PhD Thesis, Amsterdam

    Google Scholar 

  • Doemel WN, Brock TD (1974) Bacterial stromatolites. Origin of laminations. Science 184: 1083–1085

    Article  Google Scholar 

  • Dornieden, Th (1997) Untersuchungen zu physikalischen (mechanischen) Auswirkungen von Pilzen auf Minerale. MSc Thesis, Oldenburg

    Google Scholar 

  • Ehrenberg CG (1838) Über das im Jahre 1686 in Curland vom Himmel gefallene Meteorpapier und über dessen Zusammensetzung aus Conferven und Infusorien. Abh königl Akad Wiss Berlin, Physikal Klasse, 44–60

    Google Scholar 

  • Eppard M, Krumbein WE, Koch C, Rhiel E, Staley J, Stackebrandt E (1996) Morphological, physiological and molecular biological investigations on new isolates similar to the genus Geodermatophilus ( Actinomycetes ). Arch Microbiol 166: 12–22

    Article  Google Scholar 

  • Friedman EI (ed) (1993) Antarctic microbiology, Wiley, New York

    Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984) Endolithic micro-organisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddy CA (eds) Microbial ecology. Current Perspectives ASM, Washington, pp 177–187

    Google Scholar 

  • Garcia-Valles M, Vendrell-Saz M, Krumbein WE, Urzi C (1996) Biological pathways leading to the formation and transformation of oxalate rich layers on monument surfaces exposed to Mediterranean climate. In: Realini M, Toniolo L (eds) The oxalate films in the conservation of works of art. EDITEAM Castello d’Argile (BO), pp 319–334

    Google Scholar 

  • Gehrmann-Jannsen, CK (1996) On the biopitting corrosion by epilithic and endolithic lichens on carbonate rocks - bio-physical and bio-chemical weathering aspects. PhD Thesis, Oldenburg

    Google Scholar 

  • Golubic S (1967) Algenvegetation der Felsen, eine ökologische Algenstudie im dinarischen Karstgebiet. Binnengewässer 23, Schweizerbarth, Stuttgart

    Google Scholar 

  • Gorbushina AA, Krumbein WE, Hamann C-H, Panina L, Soukharjevski S, Wollenzien U (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11: 205–221

    Article  Google Scholar 

  • Gorbushina AA, Krumbein WE, Vlasov D (1996a) Biocarst cycles on monument surfaces. In: Pancella R (ed) Preservation and restoration of cultural heritage. Proceedings of the 1995 LPC Congress. EPFL, Lausanne, pp 319–332

    Google Scholar 

  • Gorbushina AA, Krumbein WE, Rosenfeld A, Goren-Inbar N (1996b) On the microbiology of flint tools and silica skins. In: Int Union of Microbiological Societies (ed) 8th Int Congress of Bacteriology and Mycology Div of IUMS, Jerusalem, p 103

    Google Scholar 

  • Haeckel E (1877) Bathybius und die Moneren. Kosmos 1: 293–305

    Google Scholar 

  • Hofmann, B (1989) Genese, Alteration und rezentes Fließsystem der Uranerzlagerstätte Krunkelbach (Menzenschwand, Südschwarzwald). PhD Thesis, Bern

    Google Scholar 

  • Hofmann-Bang N (1813) Conferva chthonoplastus. In: Hornemann JWE (ed) Flora Danica. Schultz, Kopenhagen

    Google Scholar 

  • Humboldt AV (1793) Florae Fribergensis specimen plantas cryptogamicas praesertim subterraneas exhibens. Rottmann, Berlin

    Google Scholar 

  • Hutton J (1788) Theory of the Earth. Trans R Soc Edinb. Book ver-Sinn 1795 vol 1+2, Edinburgh

    Google Scholar 

  • Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im Schweizerischen Mittelland. Beitr Kryptogamenflora, Schweiz, 9: 1–560

    Google Scholar 

  • Jones D, Wilson MJ (1986) Biomineralization in crustose lichens. In: Leadbeater SC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon Press, Oxford, pp 91–106

    Google Scholar 

  • Karl DM (ed) (1995) The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton

    Google Scholar 

  • Klappa CF (1979) Lichen stromatolites. Criterion for subaerial exposure and a mechanism for the formation of laminar calcretes (caliche). J Sed Petrol 49: 387–400

    Article  Google Scholar 

  • Krumbein WE (1966) Zur Frage der Gesteinsverwitterung ( Ueber geochemische und mikrobiologische Bereiche der exogenen Dynamik) PhD Thesis, Wuerzburg

    Google Scholar 

  • Krumbein WE (1969) Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geol Rdsch 58: 333–363

    Article  Google Scholar 

  • Krumbein WE (1979) Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai): Geomicrobiol J 1: 139–203

    Article  Google Scholar 

  • Krumbein WE (1983) Stromatolites–challenge of a term in space and time. Precambrian Res 20: 493–531

    Article  Google Scholar 

  • Krumbein WE (1987a) Die Entdeckung inselbildender Mikroorganismen. In: Gerdes G, Krumbein WE, Reineck H-E, Kramer (eds) Mellum–Portrait einer Insel. Frankfurt am Main, pp 62–75

    Google Scholar 

  • Krumbein WE (1987b) Das Farbstreifensandwatt: Bau, Struktur und Erdgeschichte von Mikrobenmatten. In: Gerdes G, Krumbein WE, Reineck H-E, Kramer (eds) Mellum–Portrait einer Insel. Frankfurt am Main, pp 170–187

    Google Scholar 

  • Krumbein WE (1993) Microbial biogeomorphogenesis–an appraisal of Immanuel Kant. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology. Spanish Soc for Microbiology, Spain, pp 483–488

    Google Scholar 

  • Krumbein WE (1994) The year of the slime–instead of an introduction. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS, Oldenburg, pp 1–7

    Google Scholar 

  • Krumbein WE (1995) A neglected carbon sink? Biodegradation of rocks. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. UNEP/CAB International, Egham, UK, pp 113–123

    Google Scholar 

  • Krumbein WE (1996) Geophysiology and parahistology of the interactions of organisms with the environment. Mar Ecol 17: 1–21

    Article  Google Scholar 

  • Krumbein WE, Diakumaku E, Gehrmann C, Gorbushina AA, Grote G, Heyn C, Hilge C, Kuroczkin J, Petersen K, Rudolph C, Schostak V, Sterflinger K, Warscheid Th, Wolf B, Wollenzien U, Kyung Y (1996) Chemoorganotrophic micro-organisms as agents in the destruction of monuments and objects of art. Proceedings of the 8th International Congress on Deterioration and Conservation of Stone, Sept 3o-Oct 04, 1996, Berlin, Möller, Berlin, pp 631–636

    Google Scholar 

  • Krumbein WE, Dyer BD (1985) This planet is alive. Weathering and biology–a multifaceted problem. In: Dreyer JI (ed) The chemistry of weathering, Reidel, Dordrecht, pp 143–160

    Chapter  Google Scholar 

  • Krumbein WE, Giele C (1979) Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. Sedimentology 26: 593–604

    Article  Google Scholar 

  • Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev Desert ( Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi: Oecologia 50: 25–38

    Article  Google Scholar 

  • Krumbein WE, Lapo A (1996) Vernadsky’s biosphere as a basis of geophysiology. pp. 115–134 In: Bunyard P (ed) Gaia in action. Science of the living Earth. Floris, Edinburgh

    Google Scholar 

  • Krumbein WE, Levit G (1997) Die Erde - ein Lebewesen (Earth - a living being). Einblicke ( Forschungsmagazin der Carl von Ossietzky Universitaet, Oldenburg ) 25: 4–7

    Google Scholar 

  • Krumbein WE, Villbrandt M (1994) Biofilme und Mikrobenmatten extremer Lebensraeume. In: Hausmann K, Kremer BP (eds) Extremophile. VCH, Weinheim, pp 113–139

    Google Scholar 

  • Lide DR (ed) (1993) CRC handbook of chemistry and physics, CRC Press, Boca Raton

    Google Scholar 

  • Ludwig R, Theobald G (1852) Über die Mitwirkung der Pflanzen bei der Ablagerung des kohlensauren Kalkes. Pogg. Ann Phys Chem 87: 91–107

    Google Scholar 

  • Mitchell TG, Shewan JM (1968) Aspects of taxonomy with respect to biodeterioration. In: Walters AH, Elphick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp 13–21

    Google Scholar 

  • Neu Th (1994) Biofilms and microbial mats. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS, Oldenburg, pp 9–16

    Google Scholar 

  • Neu Th (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev 60: 151–166

    Google Scholar 

  • Potts M (1994) Desiccation tolerance in prokaryotes. Microbiol Reviews 58:755–805

    Google Scholar 

  • Potts M (1996) Etymology of the genus name Nostoc (cyanobacteria). Int J Syst Bact 47: 584–584

    Article  Google Scholar 

  • Rivadeneyra MA, Ramos-Cormenzana A, Garcia-Cervigon A (1985) Etude de l’influence du rapport Mg/Ca sur la formation de carbonate par les bactéries telluriques. Can J Microbiol 31: 229–231

    Article  Google Scholar 

  • Rivadeneyra MA, Delgado R, delMoral A, Ferrer M, Ramos-Cormenzana A (1994) Carbonate precipitation by Bacillus sp. isolated from saline soils. Geomicrobiol J 11: 175–184

    Google Scholar 

  • Roelleke S, Muyzer G, Wawer C, Wanner G, Lubitz W (1996) Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16 S rRNA. Appl Environ Microbiol 62: 2059–2065

    Google Scholar 

  • Scholz J (1996) Eine Feldtheorie der Bryozoen, Mikrobenmatten und Sedimentoberflächen. Habilitationsschrift, Hamburg

    Google Scholar 

  • Scholz J, Krumbein WE (1996) Microbial mats and biofilms associated with bryozoans. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. Proceedings of the loth Int Bryozoology Conference, Wellington, New Zealand. National Institute of Water and Atmosphere Research Ltd, Wellington, NZ, pp 283–298

    Google Scholar 

  • Schrödinger E (1944) What is life? Cambridge Univ Press, Cambridge

    Google Scholar 

  • Schwartzman DW, Volk T (1990) Biotic enhancement of weathering and the habitability of earth. Nature 340: 457–460

    Article  Google Scholar 

  • Schwartzman DW, Volk T (1991) When soil cooled the world. New Sci 51: 33–36

    Google Scholar 

  • Staley JT, Adams JB, Palmer FE (1992) Desert varnish: a biological perspective. In: Stotzky G, Bollag JM (eds) Soil biochemistry 7. Marcel Dekker, New York, pp 173–195

    Google Scholar 

  • Sterflinger K (1995) Geomicrobiological investigations on the alteration of marble monuments by dematiaceous fungi (Sanctuary of Delos, Cyclades, Greece ). PhD Thesis

    Google Scholar 

  • Sterflinger K, Becker T, Krumbein WE, Warscheid T (1994) The respiration bell jar - a rapid non-destructive technique for the measurement of the activity of micro-organisms on and in objects of cultural value. Dtsch. Gesellschaft für zerstörungsfreie Prüfung, Berichte, 45: 382–391

    Google Scholar 

  • Sterflinger K, Blazquez F, Garcia-Vallès M, Krumbein WE, Vendrell-Saz M (1996) Patina, microstromatolites and black spots as related to biodeterioration processes of granite. In: Vicente MA., Delgado-Rodrigues J, Acevedo J (eds) Degradation and conservation of granitic rocks in monuments. Protection and Conservation of the European Cultural Heritage. Res Rep Nr 5, pp 391–397

    Google Scholar 

  • Viles HA (1984) Biokarst. Review and prospect. Progr Physical Geogr 8: 532–542

    Google Scholar 

  • Wachendörfer V, Riege H, Krumbein WE (1994) Parahistological sediment in thin sections. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. BIS, Oldenburg, pp 257–277

    Google Scholar 

  • Wang Fuxing (1993) Biokarst. Int Geol Corr Program 299. Geol Publ House, Beijing

    Google Scholar 

  • Watchman AL (1996) Properties and dating of silica skins associated with rock art. PhD Thesis, Canberra

    Google Scholar 

  • Wolf B, Krumbein WE (1996) Tiefenbesiedlung und Biodeterioration an Marmorkapitellen des Freundschaftstempels im Park von Sanssouci ( Potsdam ). Int Z Bauinstandsetzen 2: 15–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gorbushina, A.A., Krumbein, W.E. (2000). Subaerial Microbial Mats and Their Effects on Soil and Rock. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics