Skip to main content

Collateral and Capillary Formation — A Comparison

  • Conference paper
Therapeutic Angiogenesis

Part of the book series: Ernst Schering Research Foundation Workshop 28 ((SCHERING FOUND,volume 28))

  • 49 Accesses

Abstract

Vascular occlusive diseases are the major cause of mortality in Western civilization. The devastating consequences of ischemia and infarction could be prevented by the timely induction of collateral artery growth. Knowing the molecular mechanisms responsible for vessel growth is the basic requirement for the development of effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham JA, Mergia A, Whang JL, Tumola A, Gospodarowicz D, Fiddes JC (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233:545–548

    Article  PubMed  CAS  Google Scholar 

  • Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101(l):4O-50

    Google Scholar 

  • Astrup T, Permin PM (1947) Fibrinolysis of the animal organism. Nature 159:681–682

    Article  PubMed  CAS  Google Scholar 

  • Baird A, Klagsbrunn M (1991) The fibroblast growth factor family. Cancer Cells 3(6):239–243

    PubMed  CAS  Google Scholar 

  • Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165

    Article  PubMed  CAS  Google Scholar 

  • Belin D, Godeau F, Vassilli JD (1984) Tumor promoter PMA stimulates the synthesis and secretion of mouse pro-urokinase in MSV-transformed 3T3 cells: this is mediated by an increase in urokinase mRNA content. EMBO J 3(8):1901–1906

    PubMed  CAS  Google Scholar 

  • Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58:575–606

    Article  PubMed  CAS  Google Scholar 

  • Buschmann I, Ito W, Höfer I, Weiß G, Kostin S, Schaper J, Schaper W (1998) GM-CSF promotes collateral artery growth via prolongation of macrophage survival. J Mol Cell Cardiol 30:A126 (abstract)

    Google Scholar 

  • Clauss M, Weich H, Breier G, Knies U, Roeckl W, Waltenberg J, Risau W (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. J Biol Chem 271:17629–17634

    Article  PubMed  CAS  Google Scholar 

  • Deindl E, Ito W, Zimmermann R, Schaper W (1997) Increased FGFR1 expression is a prerequisite for angiogenesis and collateral growth. J Mol Med 75(5): 13 (abstract)

    Google Scholar 

  • Deindl E, Ito W, Zimmermann RJ, Schaper W (1998) VEGF, in important angiogenic factor, is not involved in arteriogenesis. J Mol Med 76(6):B24 (abstract)

    Google Scholar 

  • Elenius K, Maatta A, Salmivirta M, Jalkanen M (1992) Growth factors induce 3T3 cells to express bFGF-binding syndecan. J Biol Chem 267(9):6435–6441

    PubMed  CAS  Google Scholar 

  • Fernig DG, Gallagher JT (1994) Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res 5:353–377

    Article  PubMed  CAS  Google Scholar 

  • Florkiewicz RZ, Sommer D (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci USA 86:3978–3981

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1995) Tumor angiogenesis. Saunders, Philadelphia

    Google Scholar 

  • Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis. Cell 87:1153–1155

    Article  PubMed  CAS  Google Scholar 

  • Givol D, Yayon A (1992) Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB 6:3362–3369

    CAS  Google Scholar 

  • Gorge G, Schmidt T, Ito BR, Pantely G, Schaper W (1988) Microvascular and collateral adaptation in swine hearts following progressive coronary artery stenosis. Basic Res Cardiol 84:524–535

    Article  Google Scholar 

  • Gross JL, Moscatelli D, Jaffe EA, Rifkin DB (1982) Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 95:974–981

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    Article  PubMed  CAS  Google Scholar 

  • Ikeda E, Achen MG, Breier G, Risau W (1995) Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270:19761–19766

    Article  PubMed  CAS  Google Scholar 

  • Isner JM, Piezcek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348:370–374

    Article  PubMed  CAS  Google Scholar 

  • Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W (1997) Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 80:829–837

    Article  PubMed  CAS  Google Scholar 

  • Jackson RL, Busch S J, Cardin AD (1991) Glycosaminoglycans molecular properties protein interactions and role in physiological processes. Physiol Rev 71:481–540

    PubMed  CAS  Google Scholar 

  • Jin Y, Pasumarthi BS, Bock ME, Lytras A, Kardami E, Cattini PA (1994) Cloning and expression of fibroblast growth factor receptor-1 isoforms in the mouse heart: evidence for isoform switching during heart development. J Mol Cell Cardiol 26:1449–1459

    Article  PubMed  CAS  Google Scholar 

  • Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family growth factors and oncogenes. Adv Cancer Res 60:1–60

    Article  PubMed  CAS  Google Scholar 

  • Jones PF (1997) Tied up (or down?) with angiopoietins. Angiogenesis 1(1):38–44

    Article  PubMed  CAS  Google Scholar 

  • Knoepfler PS, Bloor CM, Carroll SM (1995) Urokinase plasminogen activator activity is increased in the myocardium during coronary artery occlusion. J Mol Cell Cardiol 27:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Koblizek TI, Weis C, Yancpoulos GD, Deutsch U, Risau W (1998) Angiopoie-tin induces sprouting angiogenesis in-vitro. Curr Biol 8(N9):529–532

    Article  PubMed  CAS  Google Scholar 

  • McNeil PL, Muthukrishnan WE, D’Amore PA (1989) Growth factors are released by mechanically wounded endothelial cells. J Cell Biol 109:811–821

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P, Morimoto T, Rifkin DB (1992) Basic fibroblast growth factor, a protein devoid of of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J Cell Physiol 151:81–93

    Article  PubMed  CAS  Google Scholar 

  • Moscatelli D (1987) High and low affinity binding sites for basic fibroblast growth factor on cultured cells absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 131(1):123–130

    Article  PubMed  CAS  Google Scholar 

  • Muthukrishan L, Warder E, McNeil PL (1991) Basic fibroblast growth factor is efficiently released from cytosolic storage sites through plasma membrane disruptions of endothelial cells. J Cell Physiol 148:1–16

    Article  Google Scholar 

  • Myers RL, Payson RA, Chotani MA, Deaven LL, Chiu IM (1993) Gene structure and differential expression of acidic fibroblast growth factor mRNA: identification and distribution of four different transcripts. Oncogene 8(2):341–349

    PubMed  CAS  Google Scholar 

  • Nagamine Y, Sudol M, Reich E (1983) Hormonal regulation of plasminogen activator mRNA in porcine kidney cells. Cell 32(4): 1184–1190

    Article  Google Scholar 

  • Ny T, Ohlsson M, Strandberg L (1988) The gene for t-PA in tissue-type plasminogen activator (t-PA). In: Kluft C (ed) Physiological and clinical aspects. CRC Press, Boca Raton

    Google Scholar 

  • Opdenakker G, Ashino-Fuse H, Van Damme J, Billiau A, De Somer P (1983) Effects of 12-O-tetradecanoylphorbol 13-acetate on the production of mRNAs for human tissue-type plasminogen activator. Eur J Biochem 131:481–487

    Article  PubMed  CAS  Google Scholar 

  • Ossowski L, Reich E (1983) Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35:611–619

    Article  PubMed  CAS  Google Scholar 

  • Partanen J, Vainikka S, Korhonen J, Armstrong E, Alitalo K (1992) Diverse receptors for fibroblast growth factors. Prog Growth Factors Res 4(1):69–83

    Article  CAS  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  PubMed  CAS  Google Scholar 

  • Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, Caput D (1989) High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG co-dons. Proc Natl Acad Sci USA 86:1836–1840

    Article  PubMed  CAS  Google Scholar 

  • Salmivirta M, Heino J, Jalkanen M (1992) Basic fibroblast growth factor syn-decan complex at cell surface or immobilized to matrix promotes cell growth. J Biol Chem 267(25): 17606–17610

    PubMed  CAS  Google Scholar 

  • Saunders S, Bernfield M (1988) Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for intestinal matrix. J Cell Biol 106(2):423–430

    Article  PubMed  CAS  Google Scholar 

  • Schaper W, Schaper J (1993) Collateral circulation — heart, brain, kidney, limbs. Kluwer Academic, Boston

    Book  Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J, Lax I, Lemmon M (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83:357–360

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  • Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I (1994) Heparin-induced oli-gomerization of FGF molecules is responsible for FGF receptor dimeriza-tion, activation, and cell proliferation. Cell 79:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Thomas KA (1996) Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem 271:603–606

    Article  PubMed  CAS  Google Scholar 

  • Tudor RM, Flook BE, Voelkel NF (1995) Increased gene expression of VEGF and the VEGF receptors KDR/Flk and Fit in lungs exposed to acute or to chronic ischemia. J Clin Invest 95:1789–1807

    Article  Google Scholar 

  • Van Belle E, Witzenbichler B, Chen D, Silver M, Ling C, Isner JM (1998) Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor. Circulation 97:381–390

    Article  PubMed  Google Scholar 

  • Vassalli JD, Reich E (1977) Macrophage plasminogen activator: induction of products of activated lymphoid cells. J Exp Med 145:429–437

    Article  PubMed  CAS  Google Scholar 

  • Vassalli JD, Dayer JM, Wohlwend A, Belin D (1984) Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macrophages. J Exp Med 159:1653–1668

    Article  PubMed  CAS  Google Scholar 

  • Waltenberg J, Mayr U, Pentz S, Hombach V (1996) Functional upregulation of vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94(7): 1647–1654

    Article  Google Scholar 

  • Wang J-K, Gao G, Goldfarb M (1994) Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol 14(1): 181–188

    PubMed  CAS  Google Scholar 

  • Williams JRB (1951) The fibrinolytic activity of urine. Br J Exp Pathol 32:530–537

    PubMed  CAS  Google Scholar 

  • Woods A, Couchman R (1998) Syndecans: synergistic acitvators of cell adhesion. Trends Cell Biol 8:189–192

    Article  PubMed  CAS  Google Scholar 

  • Xin X, Johnson AD, Scott-Burden T, Engler D, Casscells W (1994) The predominant form of fibroblast growth factor receptor expressed by proliferating human arterial smooth muscle cells in culture is type I. Biochem Bio-phys Res Commun 204(2):557–564

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

J. A. Dormandy W. P. Dole G. M. Rubanyi

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deindl, E., Schaper, W. (1999). Collateral and Capillary Formation — A Comparison. In: Dormandy, J.A., Dole, W.P., Rubanyi, G.M. (eds) Therapeutic Angiogenesis. Ernst Schering Research Foundation Workshop 28, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03776-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03776-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03778-2

  • Online ISBN: 978-3-662-03776-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics