Skip to main content

Remote Functional Depression of Glucose Metabolism in Stroke and its Alteration by Activating Drugs

  • Chapter
Positron Emission Tomography of the Brain

Abstract

Applying the [18F]fluorodeoxyglucose (FDG) method (Reivich et al. 1979a; Phelps 1981) and positron emission tomography (PET) in man, increased local cerebral metabolic rates for glucose (LCMRGl) during functional activation of nervous tissue have been demonstrated for the visual system (Reivich et al. 1979b; Phelps et al. 1981a), for the auditory system (Alavi et al. 1981; Phelps et al. 1982), and for the somatosensory system (Greenberg et al. 1981). By means of the 77Kr inhalation technique, an increase in local cerebral blood flow (LCBF) was documented in the motor area after complicated finger movements (Roland et al. 1981). Some of these striking results and prospects on future studies have been reported by Phelps and Mazziotta (this volume) and Reivich et al. (this volume). In other studies of cerebral metabolism in patients suffering from ischemic stroke, a depression of oxygen uptake or glucose metabolism was observed in morphologically intact brain regions: Kuhl et al. (1980) described a reduction of glucose uptake in the thalamus ipsilateral to a cortical infarct. Using FDG (Phelps et al. 1981b) or [11C]3-methyl-Dglucose (Heiss et al. 1982) as metabolic tracer, decreased glucose uptake was found in the CT-intact visual cortex of patients with an infarction in the territory of the middle cerebral artery by which the visual pathway was interrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi A, Reivich M, Greenberg J et al. (1981) Mapping of functional activity in brain with [18F] fluorodeoxyglucose. Semin Nucl Med 11: 24–31

    Article  PubMed  CAS  Google Scholar 

  2. Baron JC, Bousser MG, Comar D et al. (1981) Crossed cerebellar diaschisis: A remote functional depression secondary to supratentorial infarction in man. J Cereb Blood Flow Metabol 1 [Suppl 1]: 500–501

    Google Scholar 

  3. Crane PD, Pardridge WM, Braun LD et al. (1981) The interaction of transport and metabolism on brain glucose utilization: A reevaluation of the lumped constant. J Neurochem 36: 1601–1604

    Article  PubMed  CAS  Google Scholar 

  4. Eriksson L, Bohm Ch, Kesselberg M et al. (1982) A four ring positron camera system for emission tomography of the brain. IEEE Trans Nucl Sci 29: 539–543

    Article  Google Scholar 

  5. Ginsberg MD, Reivich M, Giandomenico A et al. (1977) Local glucose utilization in acute focal cerebral ischemia: local dysmetabolism and diaschisis. Neurology (Minneap) 27: 1042–1048

    CAS  Google Scholar 

  6. Greenberg J, Reivich M, Alavi A et al. (1981) Metabolic mapping of functional activity in human subjects with the [18F]-fluorodeoxyglucose technique. Science 212: 678–680

    Article  PubMed  CAS  Google Scholar 

  7. Hawkins R, Phelps ME, Huang SC et al. (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metabol 1: 37–52

    Article  CAS  Google Scholar 

  8. Heiss WD, Vyska K, Kloster G et al. (1982) Demonstration of decreased functional activity of visual cortex by [11C]-methylglucose and positron emission tomography. Neuroradiology 23: 45–47

    Article  PubMed  CAS  Google Scholar 

  9. Hoedt-Rasmussen K, Skinhej E (1964) Transneural depression of the cerebral hemispheric metabolism in man. Acta Neurol Scand 40: 41–46

    Article  PubMed  CAS  Google Scholar 

  10. Huang SC, Phelps ME, Hoffman EJ et al. (1981) Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metabol 1: 391–401

    Article  CAS  Google Scholar 

  11. Kuhl DE, Phelps ME, Kowell AP et al. (1980) Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8: 47–60

    Article  PubMed  CAS  Google Scholar 

  12. Lenzi GL, Frackowiak RS, Jones T (1981) Regional cerebral blood flow (CBF), oxygen utilization (CMRO2) and oxygen extraction ratio (OER) in acute hemispheric stroke. J Cereb Blood Flow Metabol 1 [Suppl 1]: 504–505

    Google Scholar 

  13. Mazziotta JC, Phelps ME, Miller J et al. (1981) Tomographic mapping of human cerebral metabolism: normal unstimulated state. Neurology (Minneap) 31: 503–516

    Google Scholar 

  14. Meyer JS, Shinohara Y, Kanda T et al. (1970) Diaschisis resulting from acute unilateral cerebral infarction. Quantitative evidence for man. Arch Neurol 23: 241–247

    Article  PubMed  CAS  Google Scholar 

  15. Mies G, Auer LM, Ebhardt G et al. (to be published) Flow and neuronal density in tissue surrounding chronic infarction. Stroke

    Google Scholar 

  16. Pede JP, Schimpfessel L, Crokaert R (1971) The action of piracetam on oxidative phosphorylation. Arch Int Physiol Biochem 79: 1036

    Google Scholar 

  17. Phelps ME (1981) Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicine. Semin Nucl Med 11: 32–49

    Article  PubMed  CAS  Google Scholar 

  18. Phelps ME, Huang SC, Hoffman EJ et al. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2fluoro-2-deoxyglucose-D-glucose: validation of method. Ann Neurol 6: 371–388

    Article  PubMed  CAS  Google Scholar 

  19. Phelps ME, Kuhl DE, Mazziotta JC (1981a) Metabolic mapping of the brain’s response to visual stimulation: studies in humans. Science 211: 1445–1448

    Article  PubMed  CAS  Google Scholar 

  20. Phelps ME, Mazziotta JC, Kuhl DE et al. (1981b) Tomographic mapping of human cerebral metabolism: Visual stimulation and deprivation. Neurology (Minneap) 31: 517–529

    CAS  Google Scholar 

  21. Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metabol 2: 113–162

    Article  CAS  Google Scholar 

  22. Reivich M, Kuhl D, Wolf A et al. (1979a) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137

    PubMed  CAS  Google Scholar 

  23. Reivich M, Greenberg J, Alavi A et al. (1979b) The use of the [18F]fluoro-deoxyglucose technique for mapping of functional neural pathways in man. Acta Neurol Scand 60 [Suppl 72]: 198–199

    Article  Google Scholar 

  24. Roland P, Meyer E, Yamamoto Y et al. (1981) Dynamic positron emission tomography as a tool in neuroscience: Functional mapping in normal human volunteers. J Cereb Blood Flow Metabol 1, Suppl 1: 463–464

    Google Scholar 

  25. von Monakow C (1914) Die Lokalisation im Großhirn and der Abbau der Funktion durch kortikale Herde. Bergmann, Wiesbaden

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, WD., Ilsen, H.W., Wagner, R., Pawlik, G., Wienhard, K. (1983). Remote Functional Depression of Glucose Metabolism in Stroke and its Alteration by Activating Drugs. In: Heiss, WD., Phelps, M.E. (eds) Positron Emission Tomography of the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95428-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95428-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12130-5

  • Online ISBN: 978-3-642-95428-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics