Skip to main content

Postersession V

Hypertonie

  • Conference paper
90. Kongreß

Zusammenfassung

In der Genese der essentiellen Hypertonie wird einer erhöhten Kochsalzzufuhr zwar nicht ausschließliche, dennoch aber große Bedeutung beigemessen [1]. Loew stellte bei nierengesunden Probanden einen NaCl-Verzehr von 13,1 ± 5,6 g/Tag fest [2], Schlierf hingegen durchschnittlich 11,32 g/Tag [3]. Während Kesteloot et al. (1980) darauf hinwiesen, daß sie bei zurückgehendem Na-Konsum in Belgien keine positive Korrelation mehr zwischen NaCl-Aufnahme und Blutdruck (BD) entgegen früheren Untersuchungen feststellen konnten [4], erschien im April 1982 von demselben Autor ein Artikel, der über eine positive Korrelation zwischen Gesamtserumkalzium und systolischem sowie diastolischem BD berichtete [5]. Kurze Zeit später veröffentlichte McCarron zwei Artikel, in denen er einerseits eine negative Korrelation zwischen ionisiertem Serumkalzium und dem BD von Normo- bzw. Hypertonikern mitteilte — das Gesamtserumkalzium war nicht mit dem BD korreliert [6]; andererseits wies er auf eine negative Korrelation zwischen diätetischer Kalziumzufuhr und Hypertonie hin [7]. Erste Hinweise auf die Verbindung erniedrigtes Kalzium — hoher systolischer BD lieferte Langford bereits 1973, als er über einen signifikant höheren Na/Ca-Quotienten im Urin bei einem systolischen BD > 125 mm Hg gegenüber < 105 mm Hg berichtete [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Loew D (1981) Hochdruck als ein Risikofaktor fir Angiopathien sowie Untersuchungen zum Kochsalzverbrauch. In: Bock KD, Schrey A (Hrsg) Natrium und Hypertonie. Wolf, Miinchen, S 83–92

    Google Scholar 

  2. Loew D, Menge K (1975) Zum Kochsalzverbrauch in der Bundesrepublik Deutschland. Klin Wochenschr 53: 1131–1132

    PubMed  CAS  Google Scholar 

  3. Wirths W (1981) Natriumverzehr in einzelnen Bevölkerungsgruppen. In: Bock KD, Schrey A (Hrsg) Natrium und Hypertonie. Wolf, Miinchen, S 103–113

    Google Scholar 

  4. Kesteloot H, Vuylsteke M, Costenoble A (1980) Relationship between blood pressure and sodium and potassium intake in a Belgium male population group. In: Kesteloot H, Joossens JV (eds) Epidemiology of the arterial blood pressure. Martinus Nijhoff, The Hague Boston London, pp 345–351

    Google Scholar 

  5. Kesteloot H, Geboers J (1982) Calcium and blood pressure. Lancet 1: 813–815

    PubMed  CAS  Google Scholar 

  6. McCarron DA (1982) Low serum concentrations of ionized calcium in patients with Hypertension. N Engl J Med 307: 226–228

    PubMed  CAS  Google Scholar 

  7. McCarron DA, Morris CD, Cole C (1982) Dietary calcium in human hypertension. Science 217: 267–269

    PubMed  CAS  Google Scholar 

  8. Langford HG, Watson RL (1973) Electrolytes, environment and blood pressure. Clin Sci Mol Med 45: 111s - 113s

    Google Scholar 

  9. Hesse A, Bach D (1982) Harnsteine. Pathobiochemie und klinisch chemische Diagnostik linische Chemie in Einzeldarstellungen. Thieme, Stuttgart

    Google Scholar 

  10. Nordin BEC, Peacock M, Wilkinson R (1972) Hypercalciuria and clinical stone disease. Clin Endocrinol Metabol. Saunders, Philadelphia

    Google Scholar 

  11. Knapp EL (1947) Factors influencing the urinary excretion of calcium in normal persons. J Clin Invest 26: 182–202

    CAS  Google Scholar 

  12. Pettifor JM et al. (1981) The effect of dietary calcium supplementation on serum calcium. Am J Clin Nutr 34: 2187–2191

    PubMed  CAS  Google Scholar 

  13. Blaustein M (1977) Sodium ions, calcium ions, blood pressure regulation and hypertension: a reassessment and a hypothesis. Am J Physio1232: C165–173

    Google Scholar 

  14. DeWardener HE (1977) Natriuretic hormone. Clin Sci Mol Med 53: 1–8

    CAS  Google Scholar 

  15. Webb CR, Bohr DF (1978) Mechanism if membrane stabilisation by calcium in vascular smooth muscle. Am J Physiol 235: C227–232

    PubMed  CAS  Google Scholar 

  16. Emanuelsson H, Holmberg S (1983) Mechanisms of angina relief after Nifedipine: a hemodynamic and myocardial metabolic study. Circulation 68: 124

    PubMed  CAS  Google Scholar 

  17. Gelmers H.1 (1982) Effect of Nimodipine (Bay 136) on postischaemic cerebrovascular reactivity, as revealed by measuring regional cerebral blood flow (rCBF). Acta Neurochir (Wien) 63: 283

    Google Scholar 

  18. Gelmers HJ (1983) Nimodipine, a new calcium antagonist, in the prophylactic treatment of migraine. Headache 23: 106

    PubMed  CAS  Google Scholar 

  19. Harris RJ, Branton NM, Symon L, Bayan M, Watson A (1982) The effects of a calcium antagonist, Nimodipine, upon physiological responses of the cerebral vasculature and its possible influence upon focal cerebral ischaemia. Stroke 13: 759

    Google Scholar 

  20. Havanka-Kanniainen H, Myllylä VV, Hokkanen E (1982) Nimodipine in the prophylaxis of migraine, a double blind study. Acta Neurol Scand 65: 77

    Google Scholar 

  21. Jansen W, Tauchert M, Hombach V, Niehues B, Behrenbeck DW, Hilger HH (1983) Hämodynamische und koronare Wirkung verschiedener Kalziumantagonisten unter Ruhebedingungen. Med Welt 34: 275

    PubMed  CAS  Google Scholar 

  22. Kazda S, Towart R (1982) Nimodipine: a new calcium antagonist drug with a preferential cerebrovascular action. Acta Neurochir (Wien) 63: 259

    CAS  Google Scholar 

  23. McLeay RAB, Stallard TJ, Watson RDS, Littler WA (1983) The effect of Nifedipine on arterial pressure and reflex cardiac control. Circulation 67: 1084

    PubMed  CAS  Google Scholar 

  24. Raemsch K (1984) Unveröffentlichte Daten zur Pharmakokinetik von Nimodipin. Institut für Pharmakokinetik der Bayer AG, Wuppertal. Persönliche Mitteilung

    Google Scholar 

  25. Towart R (1981) The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium-antagonistic dihydropyridines an investigation of the mechanism of action of Nimodipine. Circ Res 48: 650

    PubMed  CAS  Google Scholar 

  26. Kazda S, Garthoff B, Meyer H, Schloßmann K, Stoepel K, Towart R, Vatei W, Nehinger E (1980) Arzneim Forsch 30: 2144

    CAS  Google Scholar 

  27. Knorr A (1982) Br J Pharmacol 76: 254 P

    Google Scholar 

  28. Kazda S, Towart R (1982) Br J Pharmacol 76: 255 P

    Google Scholar 

  29. Stoepel K, Heise A, Kazda S (1981) Pharmacological studies of the antihypertensive effect of Nitrendipine. Arzneim Forsch 31: 2056–2061

    CAS  Google Scholar 

  30. Thiede HM, Kehr W (1981) Conjoint radioenzymatic measurement of catecholamines, their catechol metabolites and DOPA in biological samples. Arch Pharmacol 318: 19–28

    CAS  Google Scholar 

  31. Lederle RM, Klaus D, Braun B (1980) Captopril bei essentieller Hypertonie. Dtsch Med Wochenschr 105: 1307–1312

    PubMed  CAS  Google Scholar 

  32. Stumpe KO, Kolloch R, Overlack A (1983) Angiotensin-Converting-Enzym-Hemmer

    Google Scholar 

  33. Neuer Weg in der Hypertoniebehandlung. Herz + Gefäße 3: 446–459

    Google Scholar 

  34. Allison SP, Chamberlain MJ, Miller JE, Ferguson R, Gillet AP, Bemand BV, Saunders RA (1969) Effects of Propranolol on blood sugar, insulin and free fatty acids. Diabetologia 5: 339–342

    PubMed  CAS  Google Scholar 

  35. Amery A, Billiet L, Boel A, Fagard R, Reybrouck T, Willems J (1976) Mechanism of hypotensiv effect during beta-adrenergic blockade in hypertensive patients. Am Heart J 91: 634–642

    PubMed  CAS  Google Scholar 

  36. Ames RP, Hill P (1976) Elevation of serum lipid levels during diuretic therapy of hypertension. Am J Med 61: 748–757

    PubMed  CAS  Google Scholar 

  37. Angervall G, Bystedt U (1974) The effect of Alprenolol and Alprenolol in combination with saluretics in hypertension. Acta Med Scand [Suppl] 554: 39–45

    CAS  Google Scholar 

  38. Ballantyne D, Ballantyne FC, McMurdo (1981) Effect of slow oxprenolol and a combination of slow oxprenolol and cyclopenthiazid on plasma lipoproteins. Atherosclerosis 39: 301–306

    CAS  Google Scholar 

  39. Bengtsson C (1974) Long-term effect of Alprenolol as antihypertensive agent. Acta Med Scand (Suppl 554 ) 195: 9–14

    CAS  Google Scholar 

  40. Berglund G, Andersson O, Larsson O, Wilhelmsen L (1976) Antihypertensive effect and side-effects of Bendroflumethiazide and Propranolol. Acta Med Scand 199: 499–506

    PubMed  CAS  Google Scholar 

  41. Bevegärd S, Castenfors J, Danielson M (1977) Haemodynamic effects of saluretic treatment and P-receptor blockade in patients with essential hypertension. Acta Med Scand 201: 99–104

    PubMed  Google Scholar 

  42. Bielmann P, Leduc G (1979) Effects of Metoprolol and Propranolol on lipid metabolism. Int J Clin Pharmacol Biopharm 17: 378–382

    PubMed  CAS  Google Scholar 

  43. Bielmann P, Brun D, Gagne C, Moorjani S, Jequier J-C, Bertrand M, Lupien P-J (1982) Beta blockers and their effects on lipoproteins, phospholipids, apoproteins A and B, in whole plasma and the different fractions. Int J Clin Pharmacol Biopharm 6: 259–264

    Google Scholar 

  44. v. Brummelen P (1983) The relevance of intrinsic sympathomimetic activity for ß-blocker-induced changes in plasma lipids. J Cardiovas Pharmacol (Suppl 1 ) 5: 851–855

    Google Scholar 

  45. Cutler R (1983) Effect of antihypertensive agents on lipid metabolism. Am J Cardiol 51: 628–631

    PubMed  CAS  Google Scholar 

  46. Day JL, Simpson N, Metcalfe J, Page RL (1979) Metabolic consequences of Atenol and Propranolol in treatment of essential hypertension. Br Med J 1: 77–80

    PubMed  CAS  Google Scholar 

  47. Day JL, Metcalfe J, Simpson CN (1982) Adrenergic mechanisms in control of plasma lipid concentrations. Br Med J 248: 1145–1148

    Google Scholar 

  48. Dietz A, Wiese W (1978) Therapeutische Möglichkeiten und Grenzen bei der Anwendung von Betablockern. Klinikarzt 7: 943–959

    Google Scholar 

  49. Fitzgerald JD (1982) The effect.of different classes of beta-antagonists on clinical and experimental hypertension. Clin Exp Hyper-Theory and Practice A4: 101–123

    CAS  Google Scholar 

  50. Franz I-W (1982) Vergleichende ergometrische Untersuchungen über die Wirkung von Beta-Rezeptorenblockern und Diuretika und deren Kombination auf den Blutdruck und das Doppelprodukt bei Hochdruckkranken. Z Kardiol 71: 129–137

    PubMed  CAS  Google Scholar 

  51. Greenberg G, Harrow UK (1981) Adverse reactions to Bendrofluazide and Propranolol for the treatment of mild hypertension. Lancet 2: 539–543

    Google Scholar 

  52. Helgeland A, Hjermann I, Holme J, Leren P (1978) Serum triglycerides and serum uric acid in untreated and Thiazid-treated patients with mild hypertension. The Oslo study. Am J Med 64: 34–38

    Google Scholar 

  53. Helgeland A, Hjermann I, Leren P (1978) High-density lipoprotein cholesterol and antihypertensive drugs. The Oslo study. Br Med J 2: 403

    Google Scholar 

  54. Helgeland A, Hjermann I, Leren P (1978) Possible metabolic side effects of beta-adrenergic blocking drugs. Br Med J 1: 828

    PubMed  CAS  Google Scholar 

  55. Johnson BF (1982) The emerging problem of plasma lipid changes during antihypertensive therapy. J Cardiovasc Pharmacol (Suppl 2 ) 4: 213–221

    Google Scholar 

  56. Lederballe Pedersen O, Mikkelsen E (1978) Beta-blockers and uric acid excretion. Lancet 2: 1160

    Google Scholar 

  57. Leren P, Foss PO, Helgeland A, Hjermann I, Holme I, Lund-Larsen PG (1980) Effect of Propranolol and Prazosin on blood lipids. Lancet 2: 4–6

    PubMed  CAS  Google Scholar 

  58. Leren P, Eide I, Foss OP, Helgeland A, Hjermann I, Holme I, Kjeldsen SE, Lund-Larsen PG (1982) Antihypertensive drugs and blood lipids. The Oslo study. J Cardiovasc Pharmacol (Suppl 2 ) 4: 222–224

    Google Scholar 

  59. Lohmann FW (1981) Die Beeinflussung des Stoffwechsels durch Beta-Rezeptorenblocker. Klin Wochenschr 59: 49–57

    PubMed  CAS  Google Scholar 

  60. Lohmann FW (1983) Serum-Lipid-Veränderungen durch Betablocker. In: Schettler G, Mörl H, Lohmann F, Wirth A (Hrsg) Metabolische und kardioprotektive Effekte durch Beta-Rezeptorenblockade. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  61. Martignoni A, Perani G, Finardi G, Mastropasqua E, Fogari R (1982) Effect of Mepindolol on serum lipids. Int J Clin Pharmacol 20: 543–545

    CAS  Google Scholar 

  62. Otero ML, Pinilla CF, Polo AE, Vazquez MR, Claros NM, Fernandez-Cruz A (1983) The effect of two beta-blockers (Mepindolol and Atenolol) on blood lipids and platelet aggregation in normal volunteers and essential hypertensive patients. Br J Clin Pharmacol (in press)

    Google Scholar 

  63. Pedersen OL, Mikkelsen E (1979) Serum potassium and uric acid changes during treatment with timolol alone and in combination with a diuretic. Clin Pharmacol Ther 26: 339–343

    PubMed  CAS  Google Scholar 

  64. Schlierf G, Papenberg J, Raetzer H (1973) The effect of 1-(indo1–4-yl-oxy)-3-isopropylamino-propran-2-ol (LB-46, Visken) on carbohydrate and lipid metabolism. Eur J Clin Pharmacol 5: 154–157

    Google Scholar 

  65. Shaw J, England JDF, Hua ASP (1978) Beta-blockers and plasma triglycerides. Br Med J 1: 986

    PubMed  CAS  Google Scholar 

  66. Smits JFM, Struyker-Bondier HAJ (1982) The mechanisms of antihypertensive action of beta-adrenergic receptor blocking drugs. Clin Exp Hyper-Theory and Practice A4: 71–86

    CAS  Google Scholar 

  67. Thumilehto J, Nissinen A (1979) Double-blind comparison of Metoprolol, Alprenolol and Oxprenolol in hypertension. Eur J Clin Pharmacol 16: 369–374

    Google Scholar 

  68. Waal-Manning HI, Dunedin NZ (1976) Metabolic effects of 13-adrenoreceptor-blockers. Drugs (Suppl 1 ) 11: 121–126

    Google Scholar 

  69. Waal-Manning H, Simpson FO (1977) Beta-blockers and lipid metabolism. Br Med J 2: 705

    PubMed  CAS  Google Scholar 

  70. Butler AM (1937) Chronic pyelonephritis and arterial hypertension. J Clin Invest 16: 889–897

    PubMed  CAS  Google Scholar 

  71. Yates-Bell JG (1959) Nephrectomy in cases of hypertension. Br Med J 2: 1371

    PubMed  CAS  Google Scholar 

  72. Kincaid-Smith P (1961) Renal ischemia and hypertension: A review of the results of surgery. Aust Ann Med 10: 166–177

    Google Scholar 

  73. McDonald DF (1968) Renal hypertension without main arterial stenosis. JAMA 203: 130

    Google Scholar 

  74. Vetter W, Vetter H, Adorjani C, Studer A, Tenschert W, Kuhlmann U, Pouliadis G, Lüscher T, Siegenthaler W (1979) Hypertonie bei einseitiger (nicht-vaskulärer) Schrumpfniere: Reninaktivität im Nierenvenenblut and Effekt der Nephrektomie. Schweiz Med Wochenschr 109: 1865–1868

    Google Scholar 

  75. Siamopoulos D, Sellars L, Mishra SC, Essenhigh DM, Robson V, Wilkinson R (1983) Experience in the management of hypertension with unilateral chronic pyelonephritis: results of nephrectomy in selected patients. Q J Med 207: 349–362

    Google Scholar 

  76. Stockigt JR, Collins RD, Nakes CA, Schambelan M, Biglieri EG (1972) Renal vein renin in various forms of renal hypertension. Lancet 1: 1194

    PubMed  CAS  Google Scholar 

  77. Vaugham ED, Bühler FR, Laragh JH, Sealye JE, Gavras H, Baer L (1975) Hypertension and unilateral parenchymal renal disease. JAMA 233: 1177

    Google Scholar 

  78. Delin K, Aurell M, Graneres G (1977) Renin-dependent hypertension in patients with unilateral kidney disease not caused by renal artery stenosis. Acta Med Scand 201: 345–351

    PubMed  CAS  Google Scholar 

  79. Lüscher TF, Vetter H, Studer A, Pouliadis G, Kuhlmann U, Glänzer K, Largiader F, Hauri D, Greminger P, Siegenthaler W, Vetter W (1981) Renal venous renin activity in various forms of curable renal hypertension. Clin Endocrinol 15: 314–320

    Google Scholar 

  80. Anonymous (1975) A new adrenal inhibitor for aldosteronism. Hypertension 1: 13–15

    Google Scholar 

  81. Anonymous (1982) Trilostane. Drug Ther Bull 20: 7–8

    Google Scholar 

  82. Hollifield JW, McKenna TJ, Wolff McD, Chick WT, Liddle GW (1975) A new adrenal inhibitor effective in the treatment of primary aldosteronism. Clin Res 23: 237A

    Google Scholar 

  83. Jungmann E, Althoff PH, Balzer-Kuna S, Magnet W, Rottmann-Kuhnke U, Sprey R, Schwedes U, Usadel KH, Schöffling K (1983) The inhibiting effect of trilostane on testosterone synthesis. Drug Res 33: 754–756

    CAS  Google Scholar 

  84. Potts GO, Creange JE, Harding HR, Schane HP (1978) Trilostane, an orally active inhibitor of steroid biosynthesis. Steroids 32: 257–267

    PubMed  CAS  Google Scholar 

  85. Schane HP (1979) Inhibition of ovarian, placental and adrenal steroid-genesis in the rhesus monkey by trilostan. Fertil Steril 32: 464–467

    PubMed  CAS  Google Scholar 

  86. Semple CG, Beastall GH, Gray CE, Thomson JA (1983) Trilostane in the management of Cushing’s syndrome. Acta Endocrinol (Kbh) 102: 107–110

    CAS  Google Scholar 

  87. Ward PD, Carter G, Banks R, MacGregor G (1981) Trilostane as cause of addisonian crisis. Lancet 2: 1178

    PubMed  CAS  Google Scholar 

  88. Winterberg B, Vetter H (1983) Die Behandlung des primären Aldosteronismus mit Trilostan. Schweiz Med Wochenschr 113: 1735–1738

    PubMed  CAS  Google Scholar 

  89. Ulick S, Nicolis GL, Vetter KK (1964) Relationship of 18-hydroxy-corticosterone to aldosterone. In: Baulieu EE, Robel R (eds) Aldosterone. Blackwell, Oxford, pp 3–7

    Google Scholar 

  90. Vecsei P, Purjesz I, Wolff HP (1969) Studies on the biosynthesis of aldosterone in solitary adenoma and in nodular hyperplasia of the adrenal cortex in patients exhibiting Conn’s syndrome. Acta Endocrinol (Kbh) 62: 391–398

    CAS  Google Scholar 

  91. Biglieri EG, Schambelan M (1978) The significance of elevated levels of plasma 18-hydroxy-corticosterone in patients with primary aldosteronism. J Clin Endocrinol Metab 49: 87–91

    Google Scholar 

  92. Bravo EL, Tarazi RC, Fouad FM, Textor SC (1982) A reappraisal of the diagnostic criteria for primary aldosteronism. Clin Sci 63: 97–100

    Google Scholar 

  93. Kem DC, Brown RD, Painton R, Hanson C, Lyons D, Weinberger M, Hollifield J, Wisgerhof M, Tang K (1983) Differentiation of mineralocorticoid-induced hypertension. In: Kaufmann W, Wambach G, Helber A, Meurer KA (eds) Mineralocorticoids and hypertension. ( International Boehringer Mannheim Symposia) Springer, Berlin Heidelberg New York Tokyo, p 155

    Google Scholar 

  94. McAreavey D, Brown JJ, Cumming AMM, Davidson JK, Duncan JG, Fraser R, Lever AF, Meik D, Robertson IS (1981) Pre-operative localization of aldosterone-secreting adrenal adenomas. Clin Endocrino115: 593–606

    Google Scholar 

  95. Connolly TM, Vecsei P, Haack D, Kohl KH, Abdelhamid S, Ammenti A (1978) Aldosterone diagnosis in hypertension: comparative evalution of radioimmunoassays for urinary aldosterone and 18–0H-corticosterone. Klin Wochenschr (Suppl) 1: 173–181

    Google Scholar 

  96. Vecsei P, Gless KH (1975) Aldosterone-Radioimmunoassay. Enke, Stuttgart

    Google Scholar 

  97. Aghajanian GK, Asher LM (1971) Histochemical fluorescence of raphe neurons: selective enhancement by tryptophan. Science 172: 1159–1161

    PubMed  CAS  Google Scholar 

  98. Aghajanian GK (1972) Influence of drugs on the firing of serotonin containing neurons in brain. Fed Proc 31: 91–96

    PubMed  CAS  Google Scholar 

  99. Bhargava KP, Raina N, Misra N, Shanker K, Vrat S (1979) Uptake of serotonin by human platelets and its relevance to CNS involvement in hypertension. Life Sci 25: 195–199

    PubMed  CAS  Google Scholar 

  100. Björklund AB, Falck B, Stenevi V (1971) Microspectrofluorimetric characterisation of monoamine in the central nervous system: evidence for a new neuronal monoamine-like compound. Prog Brain Res 34: 63–73

    Google Scholar 

  101. Eccleston D, Ashcroft GW, Crawford TBB (1965) 5-Hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. II. Applications and drug studies. J Neurochem 12: 493–503

    Google Scholar 

  102. Feltkamp H, Meurer KA (1982) Serotonin dependent decrease of blood pressure in essential hypertension after oral tryptophan loading. IX World Congress of Cardiology, Moskau. Abstracts, vol 1, no 220

    Google Scholar 

  103. Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173: 149–152

    PubMed  CAS  Google Scholar 

  104. Green AR, Koslow SH, Costa E (1973) Identification and quantitation of a new indolealkylamine in rat hypothalamus. Brain Res 51: 371–374

    PubMed  CAS  Google Scholar 

  105. Kamal LA, Le Quan-Bui KH, Meyer Ph (1983) Decreased uptake and content of serotonin in blood platelets in hypertensive patients. 1st Eur Meet Hypertension Abstr 206

    Google Scholar 

  106. Kuhn DM, Wolf WA, Lovenberg LW (1980) Review of the role of the central serotonergic neuronal system in blood pressure regulation. Hypertension 2: 243–255

    PubMed  CAS  Google Scholar 

  107. Laubscher A, Pletscher A (1979) Uptake of 5-hydroxytryptamine in blood platelets and its inhibition by drugs: role of plasma membrane and granular storage. J Pharm Pharmacol 31: 284–289

    PubMed  CAS  Google Scholar 

  108. Marsden CA, Curzon G (1974) Effect of lesions and drugs on brain tryptamine J Neurochem 23: 1171–1176

    CAS  Google Scholar 

  109. Wier SE (1981) Pharmacokinetics of tryptophan, renal handling of kynurenine and the effect of nicotinamide on its appearance in plasma and urine following L-tryptophan loading of healthy subjects. Eur J Clin Pharmacol 21: 137–142

    Google Scholar 

  110. Paasonen MK (1968) Platelet 5-hydroxytryptamine as a model in pharmacology. Ann Med Exp Fenn 46: 416–422

    PubMed  CAS  Google Scholar 

  111. Pletscher A (1968) Metabolism, transfer and storage of 5-hydroxytryptamine in blood platelets. Br J Pharmacol Chemother 32: 1–6

    PubMed  CAS  Google Scholar 

  112. Saavedra JM (1973) Effect of drugs on the tryptamine content of rat tissues. J Pharmacol Exp Ther 185: 523–529

    PubMed  CAS  Google Scholar 

  113. Sneddon JM (1973) Blood platelets as a model for monoamine-containing neurones. In: Kerkut GA, Philhsi JW (eds) Progress in neurobiology, vol 1, part 2. Pergamon, Oxford, pp 151–198

    Google Scholar 

  114. Yuwiler A (1973) Conversion of D- and L-tryptophan to brain serotonin and 5-hydroxyindoleacetic acid and to blood serotonin. J Neurochem 20: 1099–1109

    PubMed  CAS  Google Scholar 

  115. Yuwiler A, Brammer GL, Morley JE, Raleigh MJ, Flannery JW, Geller E (1981) Short-term and repetitive administration of oral tryptophan in normal men. Effects on blood tryptophan, serotonin and kynurenine concentrations. Arch Gen Psychiatry 38: 619–626

    Google Scholar 

  116. Mann JFE, Hausen M, Kutter A, Sudhoff R, Ritz E (1982) Altered betareceptor responsiveness in uraemic rats. Proc EDTA 19: 788–789

    Google Scholar 

  117. Adams RG, Harrison JF, Scott P (1961) The development of cadmium-induced proteinuria, impaired renal function and osteomalacia in alkaline battery workers. Q J Med 16: 425

    Google Scholar 

  118. Beevers DG, Erskin E, Robertson M (1976) Blood-lead and hypertension. Lancet 2: 1–3

    PubMed  CAS  Google Scholar 

  119. Blaustein MV (1977) Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol 232: C165 — C173

    PubMed  CAS  Google Scholar 

  120. Chisholm JJ Jr, Harrison HC, Eberlein WR, Harrison HE (1955) Aminociduria, hypophosphatemia, and rickets in lead poisoning. Am J Dis Child 89: 159–168

    Google Scholar 

  121. Clarkson TW, Kench JE (1956) Urinary excretion of amino acids by men absorbing heavy metals. Biochem J 62: 361

    PubMed  CAS  Google Scholar 

  122. Fleischer N, Mouw DR, Vander AJ (1980) Chronic effects of lead on renin and renal sodium excretion. J Lab Clin Med 95: 759–770

    PubMed  CAS  Google Scholar 

  123. Goldberg J, Aisenbrey G, Levi M, Berl T, Schrier R (1980) Common pathway for vasoconstrictor properties of angiotensin, norepinephrine, and vasopressin ( Abstract ). Kidney Int 19: 167

    Google Scholar 

  124. Kopp SJ, Perry HM Jr, Glonek T, Erlanger M, Perry EF, Barany M, D’Agrosa LS (1980) Cardiac physiologic-metabolic changes after chronic low-level heavy metal feeding. Am J Physiol 239: H22 — H30

    PubMed  CAS  Google Scholar 

  125. Kramer HJ (1981) Natriuretic hormone

    Google Scholar 

  126. A circulating inhibitor of sodium-and potassium-activated adenosine triphosphatase. Its potential role in body fluid and blood pressure regulation. Klin Wochenschr 59: 1225–1230

    Google Scholar 

  127. Kramer HJ, Gonick HC (1970) Experimental Fanconi syndrome. I. Effect of maleic acid on renal cortical Na-K-ATPase activity and ATP levels. J Lab Clin Med 76: 799–808

    Google Scholar 

  128. Leaf A (1960) The syndrome of osteomalacia, renal glycosuria, aminociduria and hyperphosphaturia (the Fanconi-Syndrom). In: Stanburg JB, Wyngaarden JB, Frederickson DS (eds) The metabolic basis of inherited disease. McGraw-Hill Book Company, Inc., New York, p 1222

    Google Scholar 

  129. Ghanian EV, Iwai J, Leitl G, Tuthill R (1978) Genetic influence on cadmium-induced hypertension. Am J Physiol 235: H385 — H391

    Google Scholar 

  130. Perry HM Jr, Erlanger MW (1973) Elevated circulating renin activity in rats following doses of cadmium known to induce hypertension. J Lab Clin Med 82: 399–405

    PubMed  CAS  Google Scholar 

  131. Reynolds ES, Tannen RL, Tyler R (1966) The renal lesion in Wilson’s disease. Am J Med 40: 518

    Google Scholar 

  132. Schroeder HA (1957) Mechanisms of hypertension. Thomas, Springfield, Ill., p 188

    Google Scholar 

  133. Schroeder HA (1965) Cadmium as a factor in hypertension. J Chronic Dis 18: 647–656

    CAS  Google Scholar 

  134. Schroeder HA (1973) Recondite toxicity of trace metals. Essays Toxicol 4: 107–199

    CAS  Google Scholar 

  135. Stöfen D (1974) Environmental lead and the heart. J Mol Cell Cardiol 6: 285–290

    PubMed  Google Scholar 

  136. Taussky HH, Shorr E (1951) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 193: 265

    Google Scholar 

  137. Thind GS (1972) Role of cadmium in human and experimental hypertension. J Air Pollut Control Assoc 22: 267–270

    PubMed  CAS  Google Scholar 

  138. Thind GS, Biery DN, Boves KC (1973) Production of arterial hypertension by cadmium in the dog. J Lab Clin Med 81: 549–556

    PubMed  CAS  Google Scholar 

  139. Thind GS, Karreman G, Stephan KF, Blakemore WS (1970) Vascular reactivity and mechanical properties of normal and cadmium-hypertensive rabbits. J Lab Clin Med 76: 560–568

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zimmermann, W. et al. (1984). Postersession V. In: 90. Kongreß. Verhandlungen der Deutschen Gesellschaft für Innere Medizin, vol 90. J.F. Bergmann-Verlag, Munich. https://doi.org/10.1007/978-3-642-85457-6_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85457-6_72

  • Publisher Name: J.F. Bergmann-Verlag, Munich

  • Print ISBN: 978-3-8070-0342-9

  • Online ISBN: 978-3-642-85457-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics