Skip to main content

Hämodynamik, Koronardurchblutung und Sauerstoffbedarf des normalen und insuffizienten Herzens

  • Chapter
Herzinsuffizienz

Part of the book series: Handbuch der inneren Medizin ((INNEREN 9,volume 9 / 4))

Zusammenfassung

Die Aufgabe des Herzens ist es, Blut in genügender Menge und mit genügendem Druck in den Kreislauf zu pumpen, um Sauerstoff und Nährstoffe, den metabo lischen Bedürfnissen entsprechend, in die Gewebe zu transportieren sowie die Stoffwechsel-Endprodukte wegzuschaffen. Unter der Voraussetzung eines genügenden Blutvolumens ist es dabei dem Herzen möglich, diese Leistung mit einer normalen Muskelfaser-Enddehnung und damit einem normalen enddiasto lischen Volumen bzw. Druck zu erbringen. Die Herzfunktion wird im wesentlichen durch die Vorlast, die Nachlast und die Kontraktilität bestimmt. Das Schlagvolumen, multipliziert mit der Herzfrequenz pro Minute, ergibt das für die Beurteilung der Herzfunktion wesentliche Herzminutenvolumen. Die Herzfunktion kann jedoch durch einen einzelnen Parameter nicht erfaßt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Allan DG, Blinks JR (1978) Calcium transience in equarin injected frog cardiac muscle. Nature 273:509

    Google Scholar 

  • Ashburn WL, Schelbert HR, Verba JW (1978) Left ventricular ejection fraction: a review of several radionuclide angiographic approaches using the scintillation camera. Prog Cardiovasc Dis 20:267

    PubMed  CAS  Google Scholar 

  • Åstrand I (1960) Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand [Suppl 169] 49:11

    Google Scholar 

  • Åstrand PO (1956) Human physical fitness with special reference to sex and age. Physiol Rev 36:307

    PubMed  Google Scholar 

  • Belier GA, Konroy J, Smith TW (1976) Ischemia-induced alterations in myocardial (Na+K+)-ATPase and cardiac glycoside-binding. J Clin Invest 57:341

    Google Scholar 

  • Berne RM (1964) Regulation of coronary blood flow. Physiol Rev 44:1

    PubMed  CAS  Google Scholar 

  • Berne RM (1980) The role of adenosine in the regulation of coronary blood flow (61 references). Circ Res 47:807

    PubMed  CAS  Google Scholar 

  • Bertel O, Bühler FR, Burkart F (1982) Clinical and hemodynamic improvement of congestive heart failure by long-term vasodilator therapy with postjunctional α1adrenocep tor blockade. J Cardiovasc Pharmacol 4:S181

    PubMed  Google Scholar 

  • Bianchi A (1904) Morfologia delle arteriae coronariae cordis. Arch Ital Anat Embriol 3:87

    Google Scholar 

  • Blackburn H (1969) Measurements in exercise electrocardiography. Thomas, Springfield, pp 284–289

    Google Scholar 

  • Brady AJ (1965) Time and displacement dependance of cardiac contractility: problems in defining the active state and force velocity relations. Fed Proc 24:1410

    PubMed  CAS  Google Scholar 

  • Braunwald E (1971) On the difference between the heart output and its contractile state. Circulation 43:171

    PubMed  CAS  Google Scholar 

  • Braunwald E (1980a) Heart disease. A textbook of cardiovascular medicine. Saunders, Philadelphia

    Google Scholar 

  • Braunwald E (1980b) Heart disease. A textbook of cardiovascular medicine. Saunders, Philadelphia, pp 413–450

    Google Scholar 

  • Braunwald E, Frahn CJ (1961) Studies on Starling’s law of the heart. Circulation 24:633

    Google Scholar 

  • Braunwald E, Ross J, Sonnenblick EH (1956) Mechanisms of contraction of the normal and failing heart. Little, Brown, Boston

    Google Scholar 

  • Braunwald E, Ross J Jr, Sonnenblick EH (1976) Regulation of coronary blood flow. In: Braunwald E (ed) Mechanisms of contraction of the normal and failing heart, 3rd edn. Little, Brown, Boston, p 200

    Google Scholar 

  • Bruce RA, Blackmon JR, Jones JW, Strait G (1963) Exercise testing in adult normal subjects and cardiac patients. Pediatrics 32:742

    PubMed  Google Scholar 

  • Bruce RA, Rowell LB, Blackmon JR, Doan AE (1965) Cardiovascular function tests. Heart Bull 14:9

    Google Scholar 

  • Burkart F (1973) Der Belastungsversuch zur besseren Beurteilung der Hämodynamik verschiedener Herzkrankheiten. Huber, Bern Stuttgart Wien, S 17–18

    Google Scholar 

  • Burkart F, Pfisterer M (1979) Bicycle ergometry during the first weeks after early mobilisation in 600 patients with myocardial infarction. In: König K (ed) Early mobilisation and testing after myocardial infarction. Council on Rehabilitation ISFC, München

    Google Scholar 

  • Burkart F, Barold S, Sowton E (1967) Hemodynamic effects of repeated exercise. Am J Cardiol 20:509

    PubMed  CAS  Google Scholar 

  • Burri C, Müller W, Kuner E, Allgöwer M (1966) Methodik der Venendruckmessung. Schweiz Med Wochenschr 96:624

    PubMed  CAS  Google Scholar 

  • Carr KW, Engler RL, Forsythe JR, Johnson AD, Gosink B (1979) Measurement of left ventricular ejection fraction by mechanical cross-sectional echocardiography. Circulation 59:1196

    PubMed  CAS  Google Scholar 

  • Chamber BM, Sonnenblick EH, Stann JF, Pool PE (1967) Association of depressed myofibrillar adenosine triphosphatase and reduced contractility in experimental heart failure. Circ Res 21:717

    Google Scholar 

  • Cooper R, Karlinger JS, O’Rourke RA, Peterson KL, Leopold G (1972a) Ultrasound determination of mean fibershortening rate in man. Am J Cardiol 29:257

    Google Scholar 

  • Cooper R, O’Rourke RA, Karlinger JS, Peterson KL, Leopold G (1972b) Comparison of ultrasound and cineangiographic measurements of the mean rate of circumferential fiber shortening in man. Circulation 46:914

    CAS  Google Scholar 

  • Cournand A, Ranges HA (1941) Catheterization of the right auricle in man. Proc Soc Exp Biol Med 46:462

    Google Scholar 

  • Criteria Committee, New York Heart Association (1964) Diseases of the heart and blood vessels. Nomenclature and criteria for diagnosis, 6th edn. Little, Brown, Boston

    Google Scholar 

  • d’Hemecourt A, Detar R (1978) Possible physiological basis for locally induced “spasm” of large coronary arteries. In : Maseri A, Klassen GA, Lesch M (eds) Primary and secondary angina pectoris. Proceedings International Symposium, June 15–17, 1976. Grune & Stratton, New York, p 177

    Google Scholar 

  • Dodge HT (1974) Hemodynamic aspects of cardiac failure. In: Braunwald E (ed) The myocardium : Failure and infarction. HP Publishing, New York, pp 70–79

    Google Scholar 

  • Dodge HT, Sandler H, Baxley WA, Hawley RR (1966) Usefulness and limitations of radiographic methods for determining left ventricular volume. Am J Cardiol 18:10

    PubMed  CAS  Google Scholar 

  • Driscol TE, Moir TW, Eckstein RW (1964) Vascular effects of changes in perfusion pressure in the nonischemic and ischemic heart. Circ Res [Suppl 1] 94:14

    Google Scholar 

  • Ehrsam R, Perruchoud A, Oberholzer M, Burkart F, Herzog H (1983) The influence of age on pulmonary haemodynamics at rest and during supine exercise. Clin Sci 65:653–660

    PubMed  CAS  Google Scholar 

  • Estes EH Jr, Entman ML, Dixon HB, Hackel DB (1966) The vascular supply of the left ventricular wall : anatomic observations, plus a hypothesis regarding acute events in coronary artery disease. Am Heart J 71:58

    PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1979) Calcium and cardiac excitation contraction coupling. Annu Rev Physiol 41:473

    PubMed  CAS  Google Scholar 

  • Falsetti HL, Mates RE, Greene DG, Bunnell IL (1971) Vmax as an index of contractile state in man. Circulation 43:467

    PubMed  CAS  Google Scholar 

  • Feigl EO (1967) Sympathetic control of the coronary circulation. Circ Res 20:262

    PubMed  CAS  Google Scholar 

  • Feigl EO (1969) Parasympathetic control of coronary blood flow in dogs. Circ Res 25:509

    PubMed  CAS  Google Scholar 

  • Fick A (1870) Ueber die Messung des Blutquantums in den Herzventrikeln. Sitzungsber Phys — Med Ges, Würzburg, S 16

    Google Scholar 

  • Folland ED, Parisi AF, Moynihan PF, Jones DR, Feldman CL, Tow DE (1979) Assessment of left ventricular ejection fraction and volumes by real time, two-dimensional echocardiography. Circulation 60:760

    PubMed  CAS  Google Scholar 

  • Ford LE, Podolsky RJ (1970) Regenerative calcium release within muscle cells. Science 67:58

    Google Scholar 

  • Forssmann W (1929) Die Sondierung des rechten Herzens. Klin Wochenschr 8:2085

    Google Scholar 

  • Fortuin NJ, Hood WP Jr, Sherman ME (1971) Determination of left ventricular volumes by ultrasound. Circulation 44:575

    Google Scholar 

  • Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:770

    Google Scholar 

  • Frommer PL, Robinson BF, Braunwald E (1966) Paired electrical Stimulation. A comparison of the effects on performance of the failing and non-failing heart. Am J Cardiol 18:638

    Google Scholar 

  • Gellai M, Norton JM, Detar R (1973) Evidence for direct control of coronary vascular tone by oxygen. Circ Res 32:279

    PubMed  CAS  Google Scholar 

  • Gibson K (1973) (Na+K)-ATPase in the myocardium. Acta Cardiologica [Suppl] XVII:41

    Google Scholar 

  • Gordon AM, Hucksley AF, Julian FJ (1966) The variation in isometric tension with sarcomer length in vertebrate muscle fibers. J Physiol (London) 184:170

    CAS  Google Scholar 

  • Graber JD, Conti CR, Lappe DL, Ross RS (1972) Effect of pacing induced tachycardia and myocardial ischemia on ventricular pressure-velocity relationships in man. Circulation 46:74

    PubMed  CAS  Google Scholar 

  • Graham TP, Jarmakani JM, Canent RV, Anderson PAW (1971) Evaluation of left ventricular contractile state in childhood. Circulation 44:1043

    PubMed  Google Scholar 

  • Greaser ML, Jamaguchi M, Brekke C, Potter J, Gergely J (1973) Troponin subunit and their interactions. Cold Spring Harbor Symp Quant Biol 37:235

    CAS  Google Scholar 

  • Greene DG, Carlisle R, Grant C, Bunnell IL (1967) Estimation of left ventricular volume by one-plane cineangiography. Circulation 35:61

    PubMed  CAS  Google Scholar 

  • Greene DG, Klocke FJ, Schimert GL (1972) Evaluation of venous bypass grafts from aorta to coronary artery by inert gas desaturation and direct flowmeter techniques. J Clin Invest 51:191

    PubMed  CAS  Google Scholar 

  • Gregg DE (1974) The natural history of collateral development. Circ Res 35:335

    PubMed  CAS  Google Scholar 

  • Gregg DE, Fisher LC (1963) Blood supply to the heart. In: Hamilton WF, Dow P (eds) Handbook of physiology, section 2: Circulation, vol 2. American Physiological Society, Washington DC, p 1517

    Google Scholar 

  • Grossman W (1980) Cardiac catheterization and angiography, 2nd edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Grüntzig A, Pyle R, Boebel N, Schlumpf M (1980) The fate of collaterals after percutaneous transluminal coronary angioplasty (abstract). Circulation [Suppl] III:161

    Google Scholar 

  • Gurtner HP, Walser P, Fässler B (1975) Normal values for pulmonary hemodynamics at rest and during exercise in man. In: Prog Resp Res, vol 9. Karger, Basel, pp 295–315

    Google Scholar 

  • Guyton A (1975) Textbook of medical physiology. Saunders, Philadelphia, pp 295–299

    Google Scholar 

  • Hamilton FN, Feigl EO (1976) Coronary vascular sympathetic beta-receptor innervation. Am J Physiol230:1569

    PubMed  CAS  Google Scholar 

  • Hegglin R, Rutishauser W, Kaufmann G, Lüthy E, Scheu H (1962) Kreislaufdiagnostik mit der Farbstoffverdünnungsmethode. Thieme, Stuttgart

    Google Scholar 

  • Hicks MJ, Shigekawa M, Katz AM (1979) Mechanism by which cyclic adenosin-3′5′ monophosphate-dependent protein kinase stimulates calcium transport in cardiac sar coplasmatic reticulum. Circ Res 44:384

    PubMed  CAS  Google Scholar 

  • Hoffman BF, Bindler E, Suckling AE (1956) Postextrasystolic potention of contraction in cardiac muscle. Am J Physiol 85:95

    Google Scholar 

  • Hugenholtz PG, Ellison RC, Urschel CW, Mirsky I, Sonnenblick EH (1970) Myocardial force-velocity relationships in clinical heart disease. Circulation 41:191

    PubMed  CAS  Google Scholar 

  • Hurst JW (1982) The heart, 5th edn. McGraw-Hill, New York, p 93

    Google Scholar 

  • Jamaguchi EN, Champlain J, Nadeau R (1975) Correlation between the response of the heart to symapthetic stimulation and the release of endogenous catecholamines into the coronary sinus of the dog. Circ Res 36:662

    Google Scholar 

  • Jorgensen CR, Kitamura K, Gobel FL (1971) Longterm precision of the N2O method for coronary flow during heavy upright exercise. J Appl Physiol 30:338

    PubMed  CAS  Google Scholar 

  • Just H (1976) Herzkatheterdiagnostik. Mannheimer Morgen, Mannheim

    Google Scholar 

  • Katz AM (1970) Contractile proteins of the heart. Physiol Rev 50:63

    PubMed  CAS  Google Scholar 

  • Kennedy JW, Baxley WA, Figley MM, Dodge HT, Blackmon JR (1966) Quantitative angiocardiography I. The normal left ventricle in man. Circulation 34:272

    PubMed  CAS  Google Scholar 

  • Kirk ES, Honig CR (1964) Non-uniform distribution of blood flow and gradients of oxygen tension within the heart. Am J Physiol 207:661

    PubMed  CAS  Google Scholar 

  • Kitamura K, Jorgensen CR, Gobel FL (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32:516

    PubMed  CAS  Google Scholar 

  • Klocke FJ (1976) Coronary blood flow in man. Prog Cardiovasc Dis XIX/2:117–166

    Google Scholar 

  • Klocke FJ, Braunwald E, Ross J Jr (1966) Oxygen cost of electrical activation of the heart. Circ Res 18:357

    PubMed  CAS  Google Scholar 

  • Knapp WH, Lorenz A, van Kaick G, Brinhus HB (1975) Herzdiagnostik mit Hilfe der M-Mode-Echokardiographie: Fortlaufende Registrierung transversaler linksven trikulärer innerer Durchmesser. I. Messung bei herzgesunden Personen. Z Kardiol 64:1095

    PubMed  CAS  Google Scholar 

  • Knapp WH, Ulmer H, Tillmanns H (1976) Herzdiagnostik mit Hilfe der M-Mode-Echo graphie: Fortlaufende Registrierung transversaler linksventrikulärer innerer Durchmesser. II. Messung an Patienten mit Myokardinsuffizienz ohne Berücksichtigung ischämischer Herzerkrankungen. Z Kardiol 65:997

    PubMed  CAS  Google Scholar 

  • König K, Messin R (1970) Methods of evaluation of the physical activity. Acta Cardiol [Suppl] 14:30

    Google Scholar 

  • Krayenbühl HP (1969) Die Dynamik und Kontraktilität des linken Ventrikels. Karger, Basel New York

    Google Scholar 

  • Krayenbühl HP, Rutishauser W, Wirz P, Amende I, Mehmel H (1973) High-fidelity left ventricular pressure measurements for the assessment of cardiac contractility in man. Am J Cardiol 31:415

    Google Scholar 

  • Krayenbühl HP, Hess OM, Turina J (1978) Assessment of left ventricular function. Cardiovasc Med 3:883

    Google Scholar 

  • Kreulen Th, Bove AA, McDonough MT, Sands MJ, Spann JF (1975) The evaluation of left ventricular function in man. A comparison of methods. Circulation 51:677

    PubMed  CAS  Google Scholar 

  • Levine HJ, Wagmann RJ (1962) Energetics of the human heart. Am J Cardiol 9:372

    PubMed  CAS  Google Scholar 

  • Levine HJ, Mclntyre KM, Lipana JG, Bing OHL (1970) Forcevelocity relations in failing and nonfailing hearts of subjects with aortic stenosis. Am J Med Sci 259:79

    PubMed  CAS  Google Scholar 

  • Lewis RP (1975) Diagnostic value of systolic time intervals in man. Cardiovasc Clin 6:245

    PubMed  CAS  Google Scholar 

  • Limon-Lason R, Bouchard A (1950) El cateterismo intracardico : Cateterisation de las caridades izquierdas en el hombre. Arch Inst Cardiol Mex 21:271

    Google Scholar 

  • Linden RJ, Mitchell JH (1960) Relationship between left ventricular diastolic pressure and myocardial segment length and observations on contribution of atrial systole. Circ Res 8:1092

    PubMed  CAS  Google Scholar 

  • Linhart JW, Mintz GS, Segal BL, Kawai N, Kotler MN (1975) Left ventricular volume measurements by echocardiography : Fact or fiction? Am J Cardiol 36:114

    PubMed  CAS  Google Scholar 

  • Lörtscher R, Emmenegger H, Burkart F, Schmitt H (1981) Reproduzierbarkeit von links ventrikulären Volumenbestimmungen mit dem semiautomatischen Komputersystem (abstract). Schweiz Med Wochenschr 111:1024

    Google Scholar 

  • MacGregor DC, Covell JW, Mahler F, Dilley RB, Ross J Jr (1974) Relations between after-load, stroke volume and the discending limb of Starling’s curve. Am J Physiol 227:884

    PubMed  CAS  Google Scholar 

  • Marshall RJ, Shepherd JT (1968) Cardiac function in health and disease. Saunders, Philadelphia London Toronto

    Google Scholar 

  • Mason DT (1969) Usefulness and limitations of the rate of rise of intraventricular pressure (dp/dt) in the evaluation of myocardial contractility in man. Am J Cardiol 23:516

    PubMed  CAS  Google Scholar 

  • Mason DT, Spann JF Jr, Zelis R, Amsterdam EA (1970a) Alterations of hemodynamics and myocardial mechanics in patients with congestive heart failure: Pathophysiologic mechanisms and assessment of cardiac function and ventricular contractility. Prog Cardiovasc Dis XII/6:507

    Google Scholar 

  • Mason DT, Spann JF Jr, Zelis R (1970b) Quantification of the contractile state of the intact human heart. Am J Cardiol 26:248

    CAS  Google Scholar 

  • Mason DT, Spann JF Jr, Zelis R, Amsterdam EA (1971a) Comparison of the contractile state of the normal, hypertrophied, and failing heart in man. In : Alpert N (ed) Cardiac hypertrophy. Academic Press, New York

    Google Scholar 

  • Mason DT, Braunwald E, Covell JW, Sonnenblick EH, Ross J Jr (1971b) Assessment of cardiac contractility. The relation between the rate of pressure rise and ventricular pressure during isovolumic systole. Circulation 44:47

    CAS  Google Scholar 

  • Maughan DW, Low ES, Alpert NR (1978) Isometric force development, isotonic shortening and elasticity measurements from calcium activated muscle of the guinea pig. J Gen Physiol 71:431

    PubMed  CAS  Google Scholar 

  • Mendel D (1968) A practice of cardiac catheterisation. Blackwell, Oxford

    Google Scholar 

  • Moir TW (1972) Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ Res 30:621

    PubMed  CAS  Google Scholar 

  • Monroe RG, Gamble WJ, Lafarge CG, Cumar AE, Manasek FJ (1970) Left ventricular performance at high end-diastolic pressures in isolated perfused dog hearts. Circ Res 26:85

    PubMed  CAS  Google Scholar 

  • Mosher P, Ross J Jr, McFate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14:250

    PubMed  CAS  Google Scholar 

  • Nayler WG (1980) Calcium antagonists. Eur Heart J 1:225

    PubMed  CAS  Google Scholar 

  • Needleman P, Kaley G (1978) Cardiac and coronary prostaglandin synthesis and function. N Engl J Med 298:1122

    PubMed  CAS  Google Scholar 

  • Opie LH (1976) Effects of regional ischemia and metabolism of glucose and fatty acids: relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ Res 38:52

    Google Scholar 

  • Page E, Polimeni PI, Zak R, Early J, Johnson M (1972) Myofibrillar mass in rats and rabbit heart muscle. Circ Res 30:430

    PubMed  CAS  Google Scholar 

  • Parmley WW (1975) Measurements of contractility during acute myocardial infarction and other stress, (abstract). International Symposium of the European Society of Cardiology, Geneva, October 15–17

    Google Scholar 

  • Parmley WW, Tomoda H, Forrester JS, Swan HJC (1974) Dissociation of pump performance and contractility in patients with acute myocardial infarction. Clin Res 22:111

    Google Scholar 

  • Peterson KL, Skloven D, Ludbrook P, Uther JB, Ross J Jr (1974) Comparison of isovolu mic and ejection phase indices of myocardial performance in man. Circulation 49:1088

    PubMed  CAS  Google Scholar 

  • Pfisterer M, Burkart F (1975) Test zur Bestimmung der körperlichen Leistungsfähigkeit drei Wochen nach Myokardinfarkt. Z Kardiol 64:1143

    PubMed  CAS  Google Scholar 

  • Pfisterer M, Ricci D, Schuler G, Swanson S, Gordon D, Peterson K, Ashburn W (1979) Validity of left ventricular ejection fractions measured at rest and peak exercise by equilibrium radionuclide angiography using short acquisition times. J Nucl Med 20:484

    PubMed  CAS  Google Scholar 

  • Pfisterer M (1982) Nuklearmedizinische Herzdiagnostik. Springer, Berlin Heidelberg New York, S 40 ff

    Google Scholar 

  • Rackley CE (1976) Quantitative evaluation of left ventricular function by radiographie techniques. Circulation 54:862

    PubMed  CAS  Google Scholar 

  • Randall WC (1977) Neuronal regulation of the heart. Oxford University Press, New York, p 440

    Google Scholar 

  • Rankin JS, McHale PA, Arentzen CE, Ling D, Greenfield JC Jr, Anderson RW (1976) The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ Res 39:304

    PubMed  CAS  Google Scholar 

  • Riecker G (1982) Klinische Kardiologie. Springer, Berlin Heidelberg New York, S 73–77

    Google Scholar 

  • Robinson S (1938) Experimental studies of physical fitness in relation to age. Arbeitsphysiologie 10:251

    Google Scholar 

  • Ross J Jr, Braunwald E (1964) The study of left ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation 29:739

    PubMed  CAS  Google Scholar 

  • Rowe GG, Castillo CA, Afonso S (1964) Coronary flow measured by the nitrous-oxide method. Am Heart J 67:457

    PubMed  CAS  Google Scholar 

  • Rubio R, Berne RM (1969) Release of adenosine by the normal myocardium and its relationship to the regulation of coronary resistance. Circ Res 25:407

    PubMed  CAS  Google Scholar 

  • Rubio R, Berne RM (1975) Regulation of coronary blood flow. Prog Cardiovasc Dis 18/2:105

    Google Scholar 

  • Sandler H, Alderman E (1974) Determination of left ventricular size and shape. Circ Res 34:1

    Google Scholar 

  • Sarnoff SJ, Braunwald E, Welch GH, Case RB, Stainsby WN, Macruz R (1958) Hemody namic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol 192:148

    PubMed  CAS  Google Scholar 

  • Schaper W, Flameng W, Winkler B, Wüsten B, Türschmann W, Neugebauer G, Carl M (1976) Quantification of collateral resistance in acute and chronic experimental coronary occlusion in the dog. Circ Res 39:371

    PubMed  CAS  Google Scholar 

  • Schelbert HR, Verba JW, Johnson AD, Brock GW, Alazrakin P, Rose FJ, Ashburn WL (1975) Nontraumatic determination of left ventricular ejection fraction by radionuclide angiocardiography. Circulation 51:902

    PubMed  CAS  Google Scholar 

  • Schiller NB, Acquatella H, Ports TA, Drew D, Goerke J, Ringertz H, Silverman NH, Brundage B, Botvinick EH, Boswell R, Carlsson E, Parmley WW (1979) Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation 60:547

    PubMed  CAS  Google Scholar 

  • Schlesinger MJ (1940) Relation of anatomic pattern to pathologic conditions of the coronary arteries. Arch Pathol 30:403

    Google Scholar 

  • Schwartz A (1974) Active transport in the mammalian myocardium. In: Langer GA, Brady AJ (eds) The mammalian myocardium. Wiley, New York, pp 81–104

    Google Scholar 

  • Schweizer W, Bucher R, Widmer L (1967) Ueber das Elektrokardiogramm während und nach körperlicher Arbeit bei 1300 berufstätigen Männern. Basler Studie II. Schweiz Med Wochenschr 97:105

    PubMed  CAS  Google Scholar 

  • Simon H, Krayenbühl HP, Rutishauser W, Preter BO (1970) The contractile state of the hypertrophied left ventricular myocardium in aortic stenosis. Am Heart J 79:587

    PubMed  CAS  Google Scholar 

  • Sommer JR, Waugh RA (1976) The ultrastructure of the mammalian cardiac muscle cell with special emphasis on the tubular membrane system. Am J Pathol 82:192

    PubMed  CAS  Google Scholar 

  • Sones FM Jr, Shirey EK, Proudfit WL, Westcott RN (1959) Cine coronary arteriography. Circulation 20:773

    Google Scholar 

  • Sonnenblick EH (1962) Force velocity relations in mammalian heart muscle. Am J Physiol 202:931

    PubMed  CAS  Google Scholar 

  • Sonnenblick EH (1964) Series elastic and contractile elements in heart muscle: changes in muscle length. Am J Physiol 207:1330

    PubMed  CAS  Google Scholar 

  • Sonnenblick EH, Ross J Jr, Covell JW, Kaiser GA, Braunwald E (1965) Velocity of contraction as a determinant of myocardial oxygen consumption. Am J Physiol 209:919

    PubMed  CAS  Google Scholar 

  • Spalteholtz W (1924) Die Arterien der Herzwand. Hirzel, Stuttgart

    Google Scholar 

  • Starling EH (1918) The Linacre lecture on the law of the heart. Longmans Green, London

    Google Scholar 

  • Stefan G, Most E (1981) Echocardiographie. Thieme, Stuttgart New York

    Google Scholar 

  • Swan HJC, Ganz W, Forrester J, Marcus H, Diamond G, Chouette D (1970) Catheteriza tion of the heart in man with the use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447

    PubMed  CAS  Google Scholar 

  • Taylor HL, Tiede K (1952) A comparison of the estimation of the basal cardiac output from a linear formula and the “cardiac index”. J Clin Invest 31:209

    PubMed  CAS  Google Scholar 

  • Teichholz LE, Kreulen T, Herman AV (1976) Problems in echocardiographic-angiogra phic correlations in the presence or absence of asynergy. Am J Cardiol 37:7

    PubMed  CAS  Google Scholar 

  • Vibert PJ, Haselgrove JC, Lowry J, Roulsen RF (1972) Structure changes in actine containing filaments of muscle. J Mol Biol 71:757

    PubMed  CAS  Google Scholar 

  • Wearn JT (1940) Morphological and functional alteration of the coronary circulation. Harvey Lect 35:243

    Google Scholar 

  • Weber A, Mary JM (1973) Molecular control mechanisms in muscle contraction. Physiol Rev 53:612

    PubMed  CAS  Google Scholar 

  • Weber KT, Janicki JS (1978) Muscle pump function of the intact heart. In: Fischman AP (ed) Heart failure. Hemisphere, Washington DC, pp 29–42

    Google Scholar 

  • Weissler AM (1977) Current concepts in cardiology: Systolic time intervals. N Engl J Med 296:321

    PubMed  CAS  Google Scholar 

  • Weissler AM, Harris WS, Schoenfeld CD (1969) Bedside technics for the evaluation of ventricular function in man. Am J Cardiol 23:577

    PubMed  CAS  Google Scholar 

  • Zimmermann HA, Scott RW, Becker ND (1950) Catheterization of the left side of the heart in man. Circulation 1:357

    Google Scholar 

Download references

Authors

Editor information

G. Autenrieth R. Bayer D. W. Behrenbeck G. Biamino H.-D. Bolte F. Burkart W.-D. Bussmann J. Cyran E. Erdmann B. Heierli F. Krück Th. Linderer G. Rahlf G. Riecker R. Schröder G. Steinbeck B. E. Strauer K. O. Stumpe E. Uhlich J. Zähringer

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burkart, F., Heierli, B. (1984). Hämodynamik, Koronardurchblutung und Sauerstoffbedarf des normalen und insuffizienten Herzens. In: Autenrieth, G., et al. Herzinsuffizienz. Handbuch der inneren Medizin, vol 9 / 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82183-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82183-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82184-4

  • Online ISBN: 978-3-642-82183-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics