Skip to main content

Biomechanical Properties of Bone

  • Chapter
Bone Densitometry and Osteoporosis

Abstract

There is no scientific answer to this teleological question. Bones may be either regarded as “serving” to protect bone marrow from cosmic radiation and to store quantities of electrolytes that are essential for life, or merely to act as columns or levers to support the body and allow locomotion and work, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascenzi A, Bell GH (1972) Bone as a mechanical engineering problem. In: Bourne GH (ed) The biochemistry and physiology of bone, 2nd edn. Academic, New York, pp 311–352

    Google Scholar 

  2. Augat P, Reeb H, Claes L (1995) Second moment of inertia of the distal radius predicts the stability of the radius and the femoral neck. Calcif Tissue Int 56: 453

    Google Scholar 

  3. Baker JL, Haugh CG (1989) Mechanical properties of bone. A review. Trans Am Soc Agr Eng 22: 678–687

    Google Scholar 

  4. Burr DB (1980) The relationships among physical, geometrical and mechanical properties of bone, with a note on the properties of nonhuman primate bone. Yearb Phys Anthropol 23: 109–146

    Google Scholar 

  5. Burr DB, Martin RB (1989) Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am J Anat 186: 186–216

    Article  PubMed  CAS  Google Scholar 

  6. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189-zoo

    Google Scholar 

  7. Burstein AH, Zilka JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 57956960

    Google Scholar 

  8. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 59954–962

    Google Scholar 

  9. Carter DR, Spengler DM (1978) Mechanical properties and composition of cortical bone. Clin Orthop Relat Res 135: 192–217

    PubMed  Google Scholar 

  10. Corcoran TA, Sandler RB, Myers ER, Lebowitz HH, Hayes WC (1994) Calculation of cross-sectional geometry of bone from CT images with application in postmenopausal women. J Comput Assist Tomogr 18: 626–633

    Article  PubMed  CAS  Google Scholar 

  11. Cummings GR, Marcus R, Palermo L et al (1994) Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. J Bone Miner Res 9: 1429–1432

    Article  PubMed  CAS  Google Scholar 

  12. Currey JD (1981) What is bone for? Property-function relationships in bone. In: Cowin SC (ed) Mechanical properties of bone. ASME, New York, pp 13–26

    Google Scholar 

  13. Currey JD (1984) What should bones be designed to do? Calcif Tissue Int 36 (S1): S7 - S10

    Article  PubMed  Google Scholar 

  14. Currey JD (1988) The effects of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21: 131–140

    Article  PubMed  CAS  Google Scholar 

  15. Faulkner KG, Glüer CC, Majumdar S, Lang P, Engelke K, Genant HK (1991) Noninvasive measurements of bone mass, structure, and strength. Current methods and experimental techniques. Am J Roentgeno1157: 1229–1237

    Google Scholar 

  16. Ferretti JL (1995) Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone 17 (4S): 353S - 364S

    Article  PubMed  CAS  Google Scholar 

  17. Ferretti JL, Capozza RF, Mondelo N, Zanchetta JR (1993) Interrelationships between densitometrical, geometric and mechanical properties of rat femurs. Inferences concerning mechanical regulation of bone modeling. J Bone Miner Res 8: 1389–1396

    Google Scholar 

  18. Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomo-graphic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18: 97–102

    Article  PubMed  CAS  Google Scholar 

  19. Ferretti JL, Frost HM, Gasser J, High W, Je WSS, Jerome C, Mosekilde L, Thompson DD (1995) Perspectives on osteoporosis research: its focus and some insights from a new paradigm. Calcif Tissue Int 57: 399–404

    Article  PubMed  CAS  Google Scholar 

  20. Ferretti JL, Gaffuri O, Capozza R, Cointry G, Bozzini C, Olivera M, Zanchetta JR, Bozzini CE (1995) Dexamethasone effects on mechanical, geometric and densitometric properties of rat femur diaphyses as described by peripheral quantitative computerized tomography and bending tests. Bone 16: 119–124

    PubMed  CAS  Google Scholar 

  21. Ferretti JL, Spiaggi EP, Capozza R, Cointry G, Zanchetta JR (1992) Interrelationships between geometric and mechanical properties of long bones from three rodent species with very different biomass. Phylogenetic implications. J Bone Miner Res 7 (S2): S423 - S425

    Article  Google Scholar 

  22. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219: 1–9

    Article  PubMed  CAS  Google Scholar 

  23. Frost HM (1989) Mechanical usage, bone mass, bone fragility. A brief overview. In: Kleerekoper M, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Liebert, New York, pp 15–42

    Google Scholar 

  24. Frost HM (1990) Skeletal structural adaptations to mechanical usage (SAT-MU). I. Redefining Wolff’s Law: the bone modeling problem. Anat Rec 226: 403–413

    Article  PubMed  CAS  Google Scholar 

  25. Frost HM (1990) Skeletal structural adaptations to mechanical usage (SAT-MU). II. Redefining Wolff’s Law: The remodeling problem. Anat Rec 226: 414422

    Google Scholar 

  26. Frost HM (1991) Some ABC’s of skeletal pathophysiology. 5. Microdamage physiology. Calcif Tissue Int 49: 229–231

    Article  PubMed  CAS  Google Scholar 

  27. Frost HM (1996) Introduction to a new skeletal physiology, vol I. Pajaro Group, Pueblo

    Google Scholar 

  28. Frost HM, Ferretti JL, Jee WSS (1997) On the roles of mechanical usage (MU), muscle strength and the mechanostat in skeletal physiology, disease and future research. Calcif Tissue Int (in press)

    Google Scholar 

  29. Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure. State of the art. J Bone Miner Res 11: 707–730

    Google Scholar 

  30. Gordon CL, Webber CE,Adami JD, Christoforou N (1996) In vivo assessment of trabecular bone structure at the distal radius from high-resolution computed tomography images. Phys Med Biol 41495–508

    Google Scholar 

  31. Hayes WC, Piazza SJ, Zysser PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am 29: 1–18

    PubMed  CAS  Google Scholar 

  32. Lang T, Keyak J, Heitz M, Augat P, Genant HK (1996) A 3D anatomic coordinate system for hip QCT. Osteoporosis Int 6 (Supp11): 203

    Article  Google Scholar 

  33. Lanyon LE, Rubin CT, Raisz LE, Marotti G, Lees H (1993) Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int 53 (S1):S1o2-S1o7

    Google Scholar 

  34. Lotz JC, Hayes WC (1990) The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg A-72: 689–700

    Google Scholar 

  35. Louis O, Willnecker J, Soykens S, van den Winkel P, Osteaux M (1995) Cortical thickness assessed by peripheral quantitative computed tomography. Accuracy evaluated on radius specimens. Osteoporosis Int 5: 446–449

    Google Scholar 

  36. Martin RB (1991) Determinants of the mechanical properties of bone. J Biomech 24 (S1): 79–88

    Article  PubMed  Google Scholar 

  37. Mosekilde L (1995) Assessing bone quality. Animal models in preclinical osteoporosis research. Bone 17 (4S): 3435–3525

    Article  Google Scholar 

  38. Ott SM, Parfitt AM, Raisz LG, Biewener J (1993) When bone mass fails to predict bone failure. Calcif Tissue Int 53 (S1): 57 - S13

    Article  Google Scholar 

  39. Recker RR (1989) Low bone mass may not be the only cause of skeletal fragility in osteoporosis. Proc Soc Exp Biol Med 191: 272–274

    PubMed  CAS  Google Scholar 

  40. Rubin CT, McLeod KJ (1996) Inhibition of osteopenia by biophysical intervention. In: Marcus R (ed) Osteoporosis. Academic, New York, pp 351–371

    Google Scholar 

  41. Rüegsegger P (1994) The use of peripheral QCT in the evaluation of bone remodelling. Endocrinologist 4: 167–176

    Article  Google Scholar 

  42. Schiessl H, Ferretti JL, Tysarczyk-Niemeyer G, Willnecker J (1996) Noninvasive bone strength index as analyzed by peripheral quantitative computed tomography. In: Schönau E (ed) Paediatric osteology: new developments in diagnostics and therapy. Elsevier, Amsterdam, pp 141–146

    Google Scholar 

  43. Schneider P, Ferretti JL, Capozza RF, Braun M, Reiners C (1996) Bone densitometric and biomechanical properties of the distal radius by noninvasive assessment. Osteoporosis Int 6 (S1): 176

    Article  Google Scholar 

  44. Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Relat Res 126: 211–218

    Article  Google Scholar 

  45. Turner CH, Burr DB (1993) Basic biomechanical measurements of b one. A tutorial. Bone 14: 595–608

    Google Scholar 

  46. Wainwright SA, Biggs WD, Currey JD, Gossline JM (1976) Mechanical design in organisms. Arnold, London

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferretti, J.L. (1998). Biomechanical Properties of Bone. In: Genant, H.K., Guglielmi, G., Jergas, M. (eds) Bone Densitometry and Osteoporosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80440-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80440-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80442-7

  • Online ISBN: 978-3-642-80440-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics