Skip to main content

Cellular and Cytoskeletal Response of Vascular Cells to Mechanical Stimulation

  • Conference paper
Medical Textiles for Implantation

Abstract

Smooth muscle cells from rabbit aortic media and endothelial cells from pig aorta were grown on hydrophilized and collagen coated silicone membranes which were subjected to cyclic and directional stretching and relaxing at a frequency of 60 per minute. The membranes were stretched with various amplitudes ranging from 2% to 20% (smooth muscle cells) and with an amplitude of 15% for endothelial cells. Cells on unstretched membranes in the same incubation chamber served as controls. In long-term experiments the stretching and relaxing of the membranes was continued for several days.

While the smooth muscle cells grown on unstretched membranes remained in random orientation in all experiments, the cells which underwent mechanical stimulation showed a high degree of orientation depending on the strength of the stimulus. The angle of cell orientation varied in direct relation to the stretching amplitude and became steeper with increasing intensity of the mechanical stimulus. For instance, by use of a stretching amplitude of 15%, smooth muscle cells oriented at angles of α = 76° ± 8° (\(\bar x\) ± SD) and α* = 104° ± 7° (\(\bar x\) ± SD), respectively. In comparison, endothelial cells oriented at an angle of α = 89° ± 12° (\(\bar x\) ± SD) by use of a stretching amplitude of 15%, i.e. with their longer axis perpendicular to the stretch direction. Endothelial cells which were subjected to stretching elongated nearly four fold when compared with polygonally shaped cells grown on unstretched membranes. Short-term experiments demonstrated that a rearrangement of the intracellular actin filament system occurs prior to the orientation of the whole cell bodies. Rearrangements of other cytoskeleton components such as actin-binding protein caldesmon, microtubules and intermediate-sized filaments were also observed and are presented in detail.

The results indicate that periodic stretching and relaxing of the artery wall by blood pulsations seems to be an essential factor which accounts for the orientation of vascular cells within the vessel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultze Jena BS (1939) Über die schraubenförmige Struktur der Arterien wand. Gegenbaurs Morph Jb 83: 230–246

    Google Scholar 

  2. Staubesand J (1959) Anatomie der Blutgefäße. I. Funktionelle Morphologie der Arterien, Venen und arteriovenösen Anastomosen. In: Ratschow M (ed) Angiologie. Thieme, Stuttgart, pp 23–82

    Google Scholar 

  3. Rhodin JG (1980) Architecture of the vessel wall. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology, section 2: the cardiovascular system, Vol. II: vascular smooth muscle. American Physiological Society, Bethesda, Maryland, pp 1–31

    Google Scholar 

  4. Langille BL, Adamson SL (1981) Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48: 481–488

    CAS  Google Scholar 

  5. Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL (1972) Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res 30: 23–33

    CAS  Google Scholar 

  6. Levesque MJ, Liepsch D, Moravec S, Nerem RM (1986) Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6: 220–229

    Article  CAS  Google Scholar 

  7. Reidy MA, Langille BL (1980) The effect of local blood flow patterns on endothelial cell morphology. Exp Mol Pathol 32: 276–289

    Article  CAS  Google Scholar 

  8. Nerem RM, Levesque MJ, Cornhill JF (1980) Arterial fluid mechanics and the endothelium. In: Nerem RM, Guyton JR (eds) Hemodynamics on the arterial wall. University of Houston Press, Houston, Texas, pp 19–23

    Google Scholar 

  9. Chamley-Campbell JH, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59: 1–61

    CAS  Google Scholar 

  10. Fischer-Dzoga K, Jones RM, Vesselinovitch D, Wissler RW (1973) Ultrastructural and immunohistochemical studies of primary cultures of aortic medial cells. Exp Mol Pathol 18: 162–176

    Article  Google Scholar 

  11. Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle cell in culture and formation of elastic fibers. J Cell Biol 50: 172–186

    Article  CAS  Google Scholar 

  12. Dartsch PC, Hammerle H, Betz E (1986) Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta anat 125: 108–113

    Article  CAS  Google Scholar 

  13. Dartsch PC, Hammerle H (1986) Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur J Cell Biol 41: 339–346

    CAS  Google Scholar 

  14. Dartsch PC, Betz E (1989) Response of cultured endothelial cells to mechanical stimulation. Basic Res Cardiol, in press

    Google Scholar 

  15. Buck RC (1982) The influence of contact guidance on the orientation of colonies of sub-cultured vascular smooth muscle cells. In Vitro 18: 783–788

    Google Scholar 

  16. Brunette DM (1986) Spreading and orientation of epithelial cells on grooved substrata. Exp Cell Res 167: 203–217

    Article  CAS  Google Scholar 

  17. Ohara PT, Buck RC (1979) Contact guidance in vitro. Light, transmission, and scanning electron microscopic study. Exp Cell Res 114: 235–249

    Article  Google Scholar 

  18. Dobrin PB (1978) Mechanical properties of arteries. Physiol Rev 58: 397–460

    CAS  Google Scholar 

  19. Rotman B, Papermaster BW (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci USA 55: 134–141

    Article  CAS  Google Scholar 

  20. Netuschil L (1981) Vitalfarbung von Plaque-Mikroorganismen mit Fluoresceindiacetat und Ethidiumbromid. Dtsch zahnarztl Z 38: 914–917

    Google Scholar 

  21. Dartsch PC(1987) Das Zellskelett von kultivierten GefaBwandzellen. Mikrokosm 76: 33–39

    Google Scholar 

  22. Osborn M, Weber K (1982) Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Meth Cell Biol 24: 97–132

    Article  CAS  Google Scholar 

  23. Kalnins VI, Connolly JA (1981) Application of immunofluorescence in studies of cytoskeletal antigens. Adv Cell Neurobiol 2: 393–460

    CAS  Google Scholar 

  24. Sobue K, Muramoto Y, Fujlta M, Kakiuchi S (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci USA 78: S652–S655

    Article  Google Scholar 

  25. Sobue K, Morimoto K, Inui M, Kanda K, Kakiuchi S (1982) Control of actin-myosin interaction of gizzard smooth muscle by calmodulin- and caldesmon-linked flip-flop mechanism. Biomed Res 3: 188–196

    CAS  Google Scholar 

  26. Ngai PK, Walsh MP (1985) Detection of caldesmon in muscle and non-muscle tissues of the chicken using polyclonal antibodies. Biochem Biophys Res Commun 127: 533–539

    Article  CAS  Google Scholar 

  27. Owada MK, Hakura A, Iida K, Yahara I, Sobue K, Kakiuchi S (1984) Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc Natl Acad Sci USA 81: 3133–3137

    Article  CAS  Google Scholar 

  28. Franke WW, Schmid E, Osborn M, Weber K (1978) Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci USA 75: 5034–5038

    Article  CAS  Google Scholar 

  29. Franke WW, Schmid E, Winter S, Osborn M, Weber K (1979) Widespread occurrence of intermediate-sized filaments of the vimentin type in cultured cells from diverse vertebrates. Exp Cell Res 123: 25–46

    Article  CAS  Google Scholar 

  30. Benninghoff A (1930) Blutgefäße und Herz. III. Arterien. In: Handbuch der mikroskopischen Anatomie des Menschen. Vol. VI/1. Springer-Verlag, Berlin, pp. 49–124

    Google Scholar 

  31. Bunce DF (1974) Atlas of arterial histology. Green, St. Louis

    Google Scholar 

  32. Cliff WU (1976) Blood vessels. Cambridge University Press, Cambridge

    Google Scholar 

  33. Fischer H (1951) Über die funktionelle Bedeutung des Spiral verlauf es der Muskulatur in der Arterien wand. Gegenbaurs Morph Jb 91: 394–445

    Google Scholar 

  34. Wezler K, Schlüter F (1953) Die Querdehnbarkeit isolierter kleiner Arterien vom muskulären Typ. Franz Steiner Verlag, Wiesbaden

    Google Scholar 

  35. Wolinski H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14: 400–413

    Google Scholar 

  36. Wolinski H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20: 99–111

    Google Scholar 

  37. Deck JD (1986) Endothelial cell orientation on aortic valves leaflets. Cardiovasc. Res. 20: 760–767

    Article  CAS  Google Scholar 

  38. Krueger JW, Young DF, Cholvin NR (1971) An in vitro study of flow response by cells. J Biomech 4: 31–36

    Article  CAS  Google Scholar 

  39. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Engineering 103: 177–185

    Article  Google Scholar 

  40. Bussolari SR, Dewey CF Jr, Gimbrone MA Jr (1982) Apparatus for subjecting living cells to fluid shear stress. Rev Sci Instrum 53: 1851–1854

    Article  CAS  Google Scholar 

  41. Eskin SG, Ives CL, Mclntire LV, Navarro LT (1984) Response of cultured endothelial cells to steady flow. Microvasc Res 28: 87–94

    Article  CAS  Google Scholar 

  42. Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Engineering 107: 341–347

    Article  CAS  Google Scholar 

  43. Remuzzi A, Dewey CF Jr, Davies PF, Gimbrone MA Jr (1984) Orientation of endothelial cells in shear fields in vitro. Biorheology 21: 617–630

    CAS  Google Scholar 

  44. Drenckhahn D, Gress T, Franke RP (1986) Vascular endothelial cell stress fibres: their potential role in protecting the vessel wall from rheological damage. Klin Wochenschr 64: 986–988

    CAS  Google Scholar 

  45. Eskin SG, Ives CL, Frangos JA, Mclntire LV (1985) Cultured endothelium: the response to flow. ASAIO J 8: 109–112

    Google Scholar 

  46. Franke RP, Gräfe M, Schnittler H, Sciffge D, Mittermayer C (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307: 648–649

    Article  CAS  Google Scholar 

  47. Franke RP, Gräfe M, Dauer U, Schnittler H, Mittermayer C (1986) Stress fibres in human endothelial cells under shear stress. Klin Wochenschr 64: 989–992

    Article  CAS  Google Scholar 

  48. Sato M, Levesque MJ, Nerem RM (1987) Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7: 276–286

    Article  CAS  Google Scholar 

  49. White GE, Fujiwara K, Shefton EJ, Dewey CF Jr, Gimbrone MA Jr (1982) Fluid shear stress influences cell shape and cytoskeletal organization in cultured vascular endothelium. Fed Proc 41: 321

    Google Scholar 

  50. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83: 2114–2117

    Article  CAS  Google Scholar 

  51. Frangos JA, Eskin SG, Mclntire LV, Ives CI (198S) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479

    Google Scholar 

  52. Franke RP, Höpken S, Schnittler HJ, Fuhrmann R, Dauer U, Zangs R, Hof Städter F, Mittermayer C(1987) Wirkung von Scherkräften auf humane Endothelzellen. In: Betz E (Hrg) FrUhveränderungen bei der Atherogenese. W. Zuckschwerdt Verlag, München, pp. 56–61

    Google Scholar 

  53. Levesque MJ, Nerem RM (1988) The influence of shear stress on vascular endothelial cell structure and function. In: Biology of the arterial wall - Satellite Meeting Siena, CIC Edizioni Internazionali, Rome, pp. 175–182

    Google Scholar 

  54. Sprague EA, Steinbach BL, Nerem RM, Schwartz CJ (1987) Influence of a laminar steady-state fluid imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Lab Invest 76: 648–656

    CAS  Google Scholar 

  55. Sprague EA, Steinbach BL, Logan SA, Nerem RM, Schwartz CJ (1988) Influence of shear stress on lipoprotein endocytosis. In: Biology of the arterial wall - Satellite Meeting Siena, CIC Edizioni Internazionali, Rome, pp. 183–188

    Google Scholar 

  56. Ives CL, Eskin SG, Meintire LV (1986) Mechanical effects on endothelial cell morphology: an in vitro assessment. In Vitro Cell Developm Biol 22: S00–S07

    Google Scholar 

  57. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Engineering 103: 177–185

    Article  Google Scholar 

  58. Ives CL, Eskin SG, Mclntire LV, DeBakey ME (1983) The importance of cell origin and substrate in the kinetics of endothelial cell alignment in response to steady flow. Trans Am Soc Artif Intern Organs 29: 269–274

    CAS  Google Scholar 

  59. Drenckhahn D (1983) Cell motility and cytoplasmic filaments in vascular endothelium. Prog appl Microcirculation 1: 53–70

    Google Scholar 

  60. Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219: 867–869

    Article  CAS  Google Scholar 

  61. Rogers KA, Kalnins VI (1983) Comparison of the cytoskeleton in aortic endothelial cells in situ and in vitro. Lab Invest 49: 650–654

    CAS  Google Scholar 

  62. Rogers KA, McKee NH, Kalnins VI (198S) Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment. Proc Natl Acad Sci USA 82: 3272–3276

    Google Scholar 

  63. Gotlieb AI, McBurnie May L, Subrahmanyan L, Kalnins VI (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol 91: 589–594

    Article  CAS  Google Scholar 

  64. Gundersen GG, Bulinski JC (1988) Selective stabilization of microtubules oriented toward the direction of cell migration. Proc Natl Acad Sci USA 85: 5946–5950

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dartsch, P.C., Betz, E. (1990). Cellular and Cytoskeletal Response of Vascular Cells to Mechanical Stimulation. In: Planck, H., Dauner, M., Renardy, M. (eds) Medical Textiles for Implantation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75802-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75802-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75804-1

  • Online ISBN: 978-3-642-75802-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics