Skip to main content

Microtubule Dynamics: Experimental Evidence and Numerical Modelling

  • Conference paper
Cytoskeletal and Extracellular Proteins

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 3))

Abstract

The involvement of GTP hydrolysis in microtubule assembly introduces a number of characteristic observable properties in the steady-state system, namely a time-dependent length redistribution process, a high level of steady-state GTP hydrolysis, unusually fast tubulin exchange kinetics, and, most significantly, the coexistence of interconverting growing and shrinking microtubules within the population. We evaluate and model the implications of these dynamic properties and we present a “Lateral Cap” model in which co-operative interactions in the microtubule end account for observed dynamic properties under both steady-state and extreme non-steady state conditions. We examine the ways in which factors such as metal ions, drugs, and microtubule associated proteins can exert different degrees of control of the behaviour of dynamic microtubule populations appropriate for regulation of their biological function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelborghs YE (1988) In: Avila J (ed) Microtubule Proteins. CRC Press, (In Press).

    Google Scholar 

  2. Carlier MF (1988) Cell Biophysics 11, 105–117.

    Google Scholar 

  3. Mitchison T, Kirschner MW (1984) Nature 312,232–237 & 237–242.

    Google Scholar 

  4. Horio T, Hotani H (1986) Nature 321, 605–607.

    Article  PubMed  CAS  Google Scholar 

  5. Cassimeris LU, Walker RA, Pryer NK, Salmon ED (1987) Bioessays 7, 149–154

    Article  PubMed  CAS  Google Scholar 

  6. Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (1988) J. Cell. Biol (in Press).

    Google Scholar 

  7. Hallett FR, Keates R. (1985) Biopolymers 24, 2403–2415.

    Article  PubMed  CAS  Google Scholar 

  8. Carlier MF, Pantaloni D (1978) Biochemistry 17, 1908–1915.

    Article  PubMed  CAS  Google Scholar 

  9. Karecla PI (1988) Ph.D.Thesis, London University.

    Google Scholar 

  10. Martin SR, Butler FMM, Clark DC, Zhou JM, Bayley PM (1987) Biochim. Biophys. Acta 914, 96–100.

    Article  PubMed  CAS  Google Scholar 

  11. Gal V, Martin SR, Bayley PM (1988) Biochem. Biophys. Res. Commun (in Press).

    Google Scholar 

  12. Martin SR, Schilstra MJ, Bayley PM (1987) Biochem. Biophys. Res. Commun. 149, 461–467

    Google Scholar 

  13. Bayley PM, Martin SR (Submitted).

    Google Scholar 

  14. Farrell KW, Jordan MA, Miller HP, Wilson L. (1987) J. Cell Biol 104, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  15. Bayley PM, Schilstra MJ, Martin SR (1988) Biophys. J. 53, 29a.

    Google Scholar 

  16. O’Brien ET, Voter WA, Erickson HP (1987) Biochemistry 26, 4148–4156.

    Article  PubMed  Google Scholar 

  17. Carlier MF, Melki R, Pantaloni D, Hill TL, Chen Y (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5257–5261.

    Article  PubMed  CAS  Google Scholar 

  18. Pirollet WD, Job D, Margolis RL, Garel JR (1987) EMBO J. 6, 3247–3252.

    PubMed  CAS  Google Scholar 

  19. Mandelkow EM, Lange G, Jagla A, Spann U, Mandelkow E (1988) EMBO J. 7, 357–365.

    PubMed  CAS  Google Scholar 

  20. Howard WD, Timasheff SN (1986) Biochemistry 25, 8292–8300.

    Article  PubMed  CAS  Google Scholar 

  21. Schilstra MJ, Martin SR, Bayley PM (1988) Proceedings: 4th Meeting, European Cytoskeletal Club,(In press).

    Google Scholar 

  22. Schilstra MJ, Martin SR, Bayley PM (submitted)

    Google Scholar 

  23. Salmon ED, McKeel M, Hays TS (1984) J. Cell Biol. 99, 1066–1075.

    Article  PubMed  CAS  Google Scholar 

  24. Hays TS, Salmon ED (1986) Cell Motil. Cytoskel. 6, 282–290.

    Article  CAS  Google Scholar 

  25. Lambeir AM, Engelborghs Y (1980) Eur. J. Biochem. 109, 619–624.

    Article  CAS  Google Scholar 

  26. Lambeir AM, Engelborghs Y (1983) Eur. J. Biochem. 132, 369–373.

    Article  PubMed  CAS  Google Scholar 

  27. Farrell KW, Wilson L (1980) Biochemistry 19, 3048–3045.

    Article  PubMed  CAS  Google Scholar 

  28. Margolis RL, Rauch CT, Wilson L (1980) Biochemistry 19, 5550–57

    Article  PubMed  CAS  Google Scholar 

  29. Sternlicht H, Ringel I (1979) J. Biol. Chem. 254, 10540–10550.

    Google Scholar 

  30. Bergen JG, Borisy GG (1983) J. Biol. Chem. 258, 4190–4194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bayley, P.M., Gal, V., Karecla, P., Martin, S.R., Schilstra, M.J., Engelborghs, Y. (1989). Microtubule Dynamics: Experimental Evidence and Numerical Modelling. In: Aebi, U., Engel, J. (eds) Cytoskeletal and Extracellular Proteins. Springer Series in Biophysics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73925-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73925-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73927-9

  • Online ISBN: 978-3-642-73925-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics