Skip to main content

Phosphate Minerals in Human Tissues

  • Chapter
Phosphate Minerals

Abstract

The mineralized or calcified tissues in biological systems are composed of two phases: organic and inorganic or mineral phases. In the invertebrates (e.g., echinoderms, mollusks, arthropods, etc.), the inorganic phase is usually calcium carbonate, CaCO3, predominantly in the form of either calcite or aragonite or both. In the invertebrates, the inorganic phase consists of one or more types of phosphate minerals (predominantly calcium phosphates) depending on the nature of calcification, i.e., normal (e.g., bones and teeth) or abnormal or pathological (e.g., dental calculi, salivary and urinary stones, soft tissue calcifications, etc.). In several pathologically calcified tissues, the mineral is non-phosphatic, such as calcium oxalates (whewellite and weddellite), sodium urates, uric acid, cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfrey AC, Solomons CC, Ciricillo J, Miller NL (1976) Extraosseous calcifications. Evidence for abnormal pyrophosphate metabolism in uremia. J Clin Invest 57:692–699

    Google Scholar 

  2. Amler MH, LeGeros RZ (1979) Infrared absorption analysis of enameloma. NY State J 45:502–503

    Google Scholar 

  3. Arends J, Davidson CL (1975) HP04 content in enamel and in artificial caries lesions. Calcif Tissue Res 18:65–75

    Google Scholar 

  4. Baud CA, Very JM (1975) Ionic substitutions in vivo in bone and tooth apatite crystals. Physico- Chemie et Crystallographie des Apatites D’lnteret Biologique. Colloque Internationaux CNRS (Paris) 230:405–410

    Google Scholar 

  5. Baud CA, Bangs S, Very JM (1977) Minor elements in bone mineral and their effects in its solubility. J Biol Buccale 5:105–202

    Google Scholar 

  6. Barone JP, Nancollas GH, Tomson M (1976) The seeded growth of calcium phosphates. The kinetics of growth of dicalcium phosphate dihydrate on hydroxy apatite. Calcif Tissue Res 21:171–182

    Google Scholar 

  7. Beevers CA (1958) The crystal structure of dicalcium phosphate dihydrate, CaHP04 • 2H20. Acta Cryst 11:273–277

    Google Scholar 

  8. Beevers CA, Maclntyre DB (1947) The atomic structure of fluorapatite and its relation to that of tooth and bone minerals. Miner Mag 27:254–259

    Google Scholar 

  9. Betts F, Posner AS (1974) An X-ray radial distribution study of amorphous calcium phosphate. Mater Res Bull 9:907–914

    Google Scholar 

  10. Bonel G (1972) Contribution de l’etude de la carbonatation des apatites. I. Synthese et etude des propriétés des apatites carbonatees de type A. Ann Chim 7:65–88

    Google Scholar 

  11. Boskey AL, Posner AS (1974) Mg stabilization of amorphous calcium phosphates: a kinetic study. Mater Res Bull 9:907–914

    Google Scholar 

  12. Bonner G, Jacob ET, Pevzner S, Jungmann A (1971) Diffuse calcification of lungs in patient on a maintenance hemodialysis. Isr J Med Sci 7:1182–1187

    Google Scholar 

  13. Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographie and chemical relations between octacalcium phosphate and hydroxyapatite Nature 196:1048–1055

    Google Scholar 

  14. Brown WE, Schroeder LW, Ferris JS (1979) Interlayering of crystalline octacalcium phosphate and hydroxylapatite. J Phys Chem 83:1385–1388

    Google Scholar 

  15. Cheng PT, Pritzker, KPH, Adams ME, Nyburg SC, Omar SA (1980) Calcium pyrophosphate crystal formation in aqueous solutions. J Rheumatol 7:609–616

    Google Scholar 

  16. Chickerur NS, Tung MS, Brown WE (1980) A mechanism for incorporation of carbonate into apatite. Calcif Tissue Int 32:55–62

    Google Scholar 

  17. Contiguglia SR, Alfred AC, Miller NL, Runnells DE, LeGeros RZ (1973) Nature of soft tissue calcifications in uremia. Kidney Int 4:229–235

    Google Scholar 

  18. Dickens B, Brown WE (1971) The crystal structure of Ca7Mg9(Ca, Mg)2(P04)12. TMPM Tscher- marks miner Petrol Mitt 16:79–104

    Google Scholar 

  19. de Jong WF (1926) La substance minerale dans les os. Rec Trav Chim 45:445–458

    Google Scholar 

  20. Dieppe P (1981) Inhibition of crystal formation in vivo and in vitro. J. Rheum, (in press)

    Google Scholar 

  21. Eanes ED (1979) Enamel apatite: chemistry, structure and properties. J Dent Res 58:829–834

    Google Scholar 

  22. Elliott JC (1973) The problems of the composition and structure of the mineral components of hard tissues. Clin Orthop 93:313–33

    Google Scholar 

  23. Elliott JS (1973) Structure and composition of urinary calculi. J Urol 109:82

    Google Scholar 

  24. Elliott JS, Quaide WL, Sharp RF, Lewis L (1968) Mineralogical studies of urine: the relationship of apatite, brushite and struvite to urinary pH. J Urol 80:269–271

    Google Scholar 

  25. Ennever J, Vogel J, Boyan-Salyers B, Riggan LJ (1979) Characterization of calculus matrix calcification nucleator. J Dent Res 58:619–623

    Google Scholar 

  26. Faure G, Netter P, Malaman B, Steinmetz J (1977) Monocrystalline calcium hydrogen phosphate dihydrate in destructive arthropathies of chondrocalcinosis. Lancet, 142–143

    Google Scholar 

  27. Faure B, Netter P, Malaman B, Steinmetz J, Duherille J, Gaucher A (1980) Scanning electron microscopic study of microcrystals implicated in human rheumatic diseases. Scanning Electron Microsc 1980, 111:163–176

    Google Scholar 

  28. Fleisch H, Russell RGG (1972) A review of the physiological and pharmacological effects of pyrophosphates on bones and teeth. J Dent Res 51:324–332

    Google Scholar 

  29. Fowler BO, Moreno EC, Brown WE (1966) Infrared spectra of hydroxy apatite, OCP and pyrolyzed OCP. Arch Oral Biol 11:477–487

    Google Scholar 

  30. Francis MD, Webb NC (1971) Hydroxyapatite formation from a hydrated calcium monohydro- gen phosphate precursor. Calcif Tissue Res 6:335–342

    Google Scholar 

  31. Gabbiani G, Tuchweber B, Selye H (1973) Experimental ectopic calcification (calciphylaxis and calcergy). In: Zipkin Z (ed) Biological mineralization Wiley & Sons, New York, p 548–586

    Google Scholar 

  32. Gee A, Deitz FR (1965) Pyrophosphate formation upon ignition of precipitated calcium phosphates. J Am Chem Soc 77:2692–2696

    Google Scholar 

  33. Gonzalez-Diaz PF, Garcia-Ramos JV, Santos M (1979) Composition of apatites in human urinary calculi. Calcif Tissue Int 28:215–225

    Google Scholar 

  34. Griffith DP, Musher DM (1976) Pathogenesis of infection stones. In: Finlayson B, Thomas WC (eds) Colloquium on renal lithiasis. Univ Press Florida, p 54–65

    Google Scholar 

  35. Gron P (1973) Saturation of human saliva with calcium phosphates. Arch Oral Biol 15:613–617

    Google Scholar 

  36. Gross R (1926) Die kristalline Struktur von Dentine und Zahnschmelz. Festschr Zahn Inst Univ Greifswald, s 59–69

    Google Scholar 

  37. Hallsworth AS, Robinson C, Weatherell JA (1972) Mineral and magnesium distribution within the approximal carious lesion of dental enamel. Caries Res 7:345–354

    Google Scholar 

  38. Heath D, Robertson AJ (1977). Pulmonary calcinosis. Thorax 32:606–611

    Google Scholar 

  39. Heughbaert JC (1977) Contribution a l’etude de revolution des orthophosphates de calcium pre- cipites en orthophosphates apatitiques. PhD These L’lnt Nat Polytech Toulouse

    Google Scholar 

  40. Hodgkinson A, Marshall RW (1975) Changes in the composition of urinary tract stones. Invest Urol 13:131–135

    Google Scholar 

  41. Holcomb DW, Young RA (1980) Thermal decomposition of human tooth enamel. Calcif Tissue Int 31:189–201

    Google Scholar 

  42. Kerebel B, Daculsi G, Vervaere A (1976) High-resolution electron microscopy and crystallography study of some biological apatites. J Ultrastruct Res 57:266–276

    Google Scholar 

  43. Kim KM, Trump BF (1975) Amorphous calcium precipitations in human aortic valve. Calcif Tissue Res 18:155–160

    Google Scholar 

  44. Kohn NN, Hughes RE, McCarthy DJ (1962). The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the ’pseudogout syndrome’. II. Identification of crystals. Ann Intern Med 56:738–745

    Google Scholar 

  45. Knuutila M, Lappalinen R, Konturi-Nahrhi V (1980) Effect of Zn and Mg on the formation of whitlockite in human subgingival calculus. Scad J Dent Res 88:513–516

    Google Scholar 

  46. Lagergren C (1956) Biophysical investigations of urinary calculi. An X-ray crystallographic and microradiographic study. Acta Radiol 133 (Sp. Suppl)

    Google Scholar 

  47. LeGeros RZ (1967) Crystallographic studies of the carbonate substitution in the apatite structure. PhD Thesis, New York Univ

    Google Scholar 

  48. LeGeros RZ (1974) Variations in the crystalline components of human dental calculi. I. Crystallographic and spectroscopic analyses. J Dent Res 53:45–50

    Google Scholar 

  49. LeGeros RZ (1974) The unit-cell dimensions of human enamel apatite: Effect of chloride incorporation. Arch Oral Biol 20:63–71

    Google Scholar 

  50. LeGeros RZ (1977) Apatites from aqueous and non-aqueous systems: Relation to biological apatites. Proc 1st Int Congr Phosphorus Compounds, Rabat, Inst Mondial Phosphate IMPHOS (Paris), p 347–360

    Google Scholar 

  51. LeGeros RZ (1981) Apatites in biological systems. Prog Crystal Growth Charact 4:1–45

    Google Scholar 

  52. LeGeros RZ, LeGeros JP, Trautz OR (1965) A computer-diffractometer method of assessing crys- tallinity. Trans Am Cryst Assn: 40

    Google Scholar 

  53. LeGeros RZ, LeGeros JP, Trautz OR, Shirra WP (1967) Apatite crystallites: Effect of carbonate on morphology. Science 155:1409–1411

    Google Scholar 

  54. LeGeros RZ, LeGeros JP, Trautz OR, Klein E (1969) Two types of carbonate substition in the apatite structure. Experienta 24:5–9

    Google Scholar 

  55. LeGeros RZ, LeGeros JP, Trautz OR, Klein E (1970) Spectral properties of carbonate in carbonate-containing apatites. Dev Appl Spectrosc 7:3–10

    Google Scholar 

  56. LeGeros RZ, LeGeros JP, Trautz OR, Shirra WP (1971) Conversion of CaHP04 to apatites: Effect of carbonate on crystallinity and morphology. Adv X-ray Anal 14:57–66

    Google Scholar 

  57. LeGeros RZ, LeGeros JP (1972) Brushite crystals grown by diffusion. J Cryst Growth 13:476–180

    Google Scholar 

  58. LeGeros RZ, Morales P (1973) Renal stone crystals grown in gel systems. J Invest Urol 11:12–20

    Google Scholar 

  59. LeGeros RZ, Contiguglia SR, Alfrey AC (1973) Pathological calcifications associated with uremia: Two types of calcium phosphate deposits. Calcif Tissue Res 13:173–185

    Google Scholar 

  60. LeGeros RZ, Miravite MA, Klein I (1974) Biological whitlockites, its formation and occurences. J Dent Res 53:117

    Google Scholar 

  61. LeGeros RZ, Shirra WP, Miravite MA, LeGeros JP (1975) Amorphous calcium phosphates: Synthetic and biological. Physico-Chemie et Crystallographie des Apatites d’lnteret Biologique. Col- loque Internationaux CNRS (Paris) 230:105–115

    Google Scholar 

  62. LeGeros RZ, Miravite MA, Quirolgico G, Morales P (1976) Factors influencing crystal growth and morphology of urinary stone crystallites. In: Finlayson B, Thomas WC Jr (eds) Colloquium in renal lithiasis. Univ Florida Press, p 187–206

    Google Scholar 

  63. LeGeros RZ, Miravite MA, Quirolgico GB, Curzon MEJ (1977) The effect of some trace elements on the lattice parameters of human and synthetic apatites. Calcif Tissue Res [Suppl] 22:362–267

    Google Scholar 

  64. LeGeros RZ, Legros R, Bonel G (1978) Types of ’H20’ in human enamel and in precipitated apaties. Calcif Tissue Res 26:111–118

    Google Scholar 

  65. LeGeros RZ, Kazimirof J, Nevins A J (1978) The nature of the calcified material induced by col- lagen-calcium phosphate gel in tooth. J Dent Res A57:206

    Google Scholar 

  66. LeGeros RZ, Quirolgico GB, Go P (1978) CaHP04 • 2H20 (DCPD): Effect of some trace elements on its crystal growth. J Dent Res A57:89

    Google Scholar 

  67. LeGeros RZ, Pentel L, Shirra WP (1979) Thermal stability of human enamel. Caries Res 13:96

    Google Scholar 

  68. LeGeros RZ, Quirolgico G, LeGeros JP (1979) Incorporation of strontium in apatite: Effect of pH and temperature. J Dent Res A58:168–169

    Google Scholar 

  69. LeGeros RZ, Shannon IL (1979) The crystalline components of dental calculi: Human vs. dog. J Dent Res 58:2371–2377

    Google Scholar 

  70. LeGeros RZ, Rankine C, Taheri H, Shannon I (1980) Calcium salts precipitated from human saliva. J Dent Res A59:366

    Google Scholar 

  71. LeGeros RZ, Suga S (1980) The crystallographic nature of fluoride in fish enameloids. Calcif Tissue Int 32:169–174

    Google Scholar 

  72. LeGeros RZ, Tung M (1980) Factors affecting fluoride incorporation in apatites. J Dent Res B59:973

    Google Scholar 

  73. LeGeros RZ, Kerebel LM, Silverstone L (1980) Comparative properties of fluoridated and non- fluoridated biological apatites. J Dent Res A59:523

    Google Scholar 

  74. LeGeros RZ, Taheri MH, Quirolgico GB, LeGeros JP (1980) Formation and stability of apatites: Effects of some cationic substituents. Proc 2nd Int Congr Phosphorus Comp, Boston, IMPHOS (Paris), p 89–103

    Google Scholar 

  75. LeGeros RZ, Vandemaele KH, Go P, Quirolgico GB, LeGeros DJ (1980) Transformation of calcium carbonates and calcium phosphates to carbonate apatites: Possible mechanisms for phosphorite formation, ibid, p 41–57

    Google Scholar 

  76. LeGeros RZ, Tung M (1982) Dissolution properties of C03-containing OH and F-apatites. J Dent Res 61:232

    Google Scholar 

  77. LeGeros RZ, Singer L, Ophaug RH, Thein A, LeGeros JP (1982) The effect of fluoride on the stability of synthetic and biological (bone mineral) apatites. In: Menczel J, Robin GC, Makin M (eds). Osteoporosis. J. Wiley, p 327–341

    Google Scholar 

  78. LeGeros RZ, Lee DD, Quirolgico GB, Shirra WP, Reich L (1982) In vitro formation of dicalcium phosphate dihydrate, CaHP04 • 2H20 (DCPD). Scan Electron Microscop (II) in press

    Google Scholar 

  79. Leonard F, Boke JW, Ruderman RJ, Hegyeli AF (1972) Initiation and inhibition of subcutaneous calcification. Calcif Tissue Res 10:269–272

    Google Scholar 

  80. Lynch KL (1958) An evaluation of factors involved in the production of magnesium ammonium phosphate crystals of bacterial origin. MS Thesis Marquette Univ

    Google Scholar 

  81. Mandel NS (1975) The crystal structure or calcium pyrophosphate dihydrate. Acta Cryst B31:1730–1734

    Google Scholar 

  82. McCarthy DJ (1976) Calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 19:275–285

    Google Scholar 

  83. McConnell D (1973) Apatite. Its crystal chemistry, mineralogy, utilization and biologic occurrences. Springer, Vienna New York, p 68–80

    Google Scholar 

  84. Mierau HD von, Trautz OR, Vahl J (1971) Kristallchemische Untersuchungen an menschlichen Skeletteilen und Zähnen. Dtsch Zahnarostl Z 26:37–45

    Google Scholar 

  85. Meyer JL, Bergert JH, Smith LH (1977). Epitaxial relationships in urolithiasis: The brushite-whe- wellite system. Clin Sci Mol Med 52:143–148

    Google Scholar 

  86. Moore PB (1984) Crystallochemistry and structures of phosphate minerals. In: Nriagu JO, Moore PB (eds) Phosphate minerals. Springer-Verlag, p 155–170

    Google Scholar 

  87. Moreno EC, Kresak M, Zahradnik RG (1977). Physico-chemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res [Suppl] 11:142–160

    Google Scholar 

  88. Myers HM (1965) Trapped water of dental enamel. Nature 206:713–716

    Google Scholar 

  89. Nelson D (1981) The influence of carbonate on the atomic structure and reactivity of hydroxyap- atite. J Dent Res 60:1621–1629

    Google Scholar 

  90. Newesely H (1966) Changes in crystal types of low solubility calcium phosphates in the presence of accompanying ions. Arch Oral Biol 6:174–189

    Google Scholar 

  91. Nylen MU, Eanes ED, Termine JD (1972) Molecular and ultrastructural studies of non-crystalline calcium phosphates. Calcif Tissue Res 9:95–108

    Google Scholar 

  92. Pak CYC, Eanes ED, Ruskin B (1971) Spontaneous precipitation of brushite in urine: evidence that brushite is the nidus of renal stones originating as calcium phosphate. Proc Natl Acad Sci USA 68:1456–1460

    Google Scholar 

  93. Parfitt MA (1969) Soft-tissue calcification in uremia. Arch Intern Med 124:544–553

    Google Scholar 

  94. Peterson WC, Carlson CH, Armstrong WD (1963) Analysis of ectopic bone in osteoma cutis. Arch Dermatol 88:540–545

    Google Scholar 

  95. Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792

    Google Scholar 

  96. Prien EL (1949) Studies on urolithiasis. II. Relationships between pathogenesis, structure and composition of calculi. J Urol 61:821–836

    Google Scholar 

  97. Pritzker KPH, Phillips H, Luk SC, Koven IH, Kiss A, Houpt JB (1976) Pseudo-tumor of temporomandibular joint: destructive calcium pyrophosphate dihydrate arthropathy. J Rheum 3:70–81

    Google Scholar 

  98. Roufosse AH, Landis WJ, Sabine WK, Glimbher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255

    Google Scholar 

  99. Rowles SL (1968) The precipitation of whitlockite from aqueous solutions. In: Colloque International Sur Les Phosphates Mineraux Solides. Bull Soc Chim Fr pp. 151–156

    Google Scholar 

  100. Russell G, Robertson WG, Fleisch H (1973) Inhibitors of mineralization. In: Zipkin I (ed) Biological Mineralization. J. Wiley and Sons, New York, pp 807–825

    Google Scholar 

  101. Schroeder H (1969) Formation and inhibition of dental calculus. Hans Hubert Publ, Vienna

    Google Scholar 

  102. Sutor D, Wooley SE, Ellingsworth J J (1974) Some aspects of the urinary stone problem in Great Britain and Northern Ireland. Br J Urol 46:275–288

    Google Scholar 

  103. Takasaki E (1971) An observation on the analysis of urinary calculi by infrared spectroscopy. Cal- cil Tissue Res 7:232–240

    Google Scholar 

  104. Taves DR, Neuman WF (1964) Factors controlling calcification in vitro: fluoride and magnesium. Arch Biochem Biophys 108:390–397

    Google Scholar 

  105. Termine JD (1972) Mineral chemistry and skeletal biology. Clin Orthop 85:207–232

    Google Scholar 

  106. Tao L-C (1978) Microliths in sputum specimens and their relationship to pulmonary alveolar microlithiasis. Am J Clin Pathol 69:482–185

    Google Scholar 

  107. Trautz OR (1967) The crystalline organization of dental mineral. In: Miles AEW (ed) Structural and Chemical Organization of Teeth. Academic Press, New York, pp 165–200

    Google Scholar 

  108. Trautz OR, Zapanta-LeGeros R, LeGeros JP (1964) Effect of magnesium on calcium phosphates. J Dent Res 43:751 (abstract)

    Google Scholar 

  109. Vahl von J, Hohling HJ, Frank RM (1964) Elektronenstrahlbeugung an rhomboedrisch aussehenden Mineralbildungen in kariösem Dentin. Arch Oral Biol 10:315–320

    Google Scholar 

  110. Vogel JJ, Amdur BH (1967) Inorganic pyrophosphate in parotid sailva and its relation to calculus formation. Arch Oral Biol 12:159–163

    Google Scholar 

  111. von Brand T, Scott DB, Nylen MU, Pugh MH (1965) Variations in the mineralogical composition of cestode calcareous corpuscles. Exp Parasitol 16:382–390

    Google Scholar 

  112. Wang N-S, Steele AA (1979) Pulmonary calcification. Arch Pathol Lab Med 103:151–157

    Google Scholar 

  113. Young RA (1975) Biological apatite vs. hydroxyapatite at the atomic level. Clin Orthop 113:249–260

    Google Scholar 

  114. Young RA, Elliott JC (1966) Atomic scale bases for several properties of apatites. Arch Oral Biol 11:699–707

    Google Scholar 

  115. Zapanta-LeGeros R (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–405

    Google Scholar 

  116. Zipkin I (1970) The inorganic composition of bones and teeth. In: Schraer H (ed) Biological calcification. Appleton-Century Crofts, New York, pp 69–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LeGeros, R.Z., Legeros, J.P. (1984). Phosphate Minerals in Human Tissues. In: Nriagu, J.O., Moore, P.B. (eds) Phosphate Minerals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61736-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61736-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-61738-6

  • Online ISBN: 978-3-642-61736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics