Skip to main content

Myocardial Blood Flow and Perfusion: Radionuclide Techniques

  • Chapter
Pan Vascular Medicine
  • 20 Accesses

Abstract

Noninvasive nuclear medicine techniques have significantly contributed to the understanding of cardiovascular physiology. Importantly, they play an important role in the diagnosis and management of cardiac disease. Within the broad scope of available radionuclide techniques, myocardial perfusion imaging has and continues to play a particularly important role. Unlike coronary angiography with its delineation of primarily anatomical or structural changes of disease, radionuclide myocardial perfusion imaging can delineate its functional consequences, especially because it offers information on myocardial blood flow or on tissue perfusion. Besides the detection of coronary artery disease, it has now assumed an important role for the assessment of risk, stratification to management, and monitoring therapy. More importantly, it may even identify functional abnormalities as a prelude to structural changes of the coronary arteries. This chapter reviews the principles and major applications of now well-established cardiovascular nuclear medicine imaging approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburn WL, Braunwald E, Simon AL, Peterson KL, Gault JH (1971) Myocardial perfusion imaging with radioactive-labeled particles injected directly into the coronary circulation of patients with coronary artery disease. Circulation 44:851–865

    CAS  PubMed  Google Scholar 

  2. Martin ND, Zaret BL, McGowan RL, Wells HP Jr, Flamm MD (1974) Rubidium-81: a new myocardial scanning agent. Radiology 111: 651–656

    CAS  PubMed  Google Scholar 

  3. Strauss HW, Zaret BL, Martin ND, Wells HP Jr, Flamm MD Jr (1973) Noninvasive evaluation of regional myocardial perfusion with potassium-43. Technique in patients with exercise-induced transient myocardial ischemia. Radiology 108:85–90

    CAS  PubMed  Google Scholar 

  4. Beanlands RS, DeKemp RA, Harmsen E, Veinot JP, Hartman NG, Ruddy TD (1996) Myocardial kinetics of technetium-99 m teboroxime in the presence of postischemic injury, necrosis and low flow reperfusion. J Am Coll Cardiol 28:487–494

    CAS  PubMed  Google Scholar 

  5. Gray WA, Gewirtz H (1991) Comparison of 99m Tc-teboroxime with thallium for myocardial imaging in the presence of a coronary artery stenosis. Circulation 84:1796–1807

    CAS  PubMed  Google Scholar 

  6. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    CAS  PubMed  Google Scholar 

  7. Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, Kuhl DE (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272

    CAS  PubMed  Google Scholar 

  8. Bergmann SR, Fox KAA, Rand AL, McElvany KD, Welch MJ, Markham J, Sobel BE (1984) Quantification of regional myocardial blood flow in vivo with H215O. Circulation 70:724–733

    CAS  PubMed  Google Scholar 

  9. Hermansen F, Ashburner J, Spinks T J, Kooner JS, Camici PG, Lammertsma AA (1998) Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med 39: 1696–1702

    CAS  PubMed  Google Scholar 

  10. Hermansen F, Rosen SD, Fath-Ordoubadi F, Kooner JS, Clark JC, Camici PG, Lammertsma AA (1998) Measurement of myocardial blood flow with oxygen-15 labelled water: comparison of different administration protocols. Eur J Nucl Med 25:751–759

    CAS  PubMed  Google Scholar 

  11. Wu HM, Hoh CK, Buxton DB, Kuhle WG, Schelbert HR, Choi Y, Hawkins RA, Phelps ME, Huang SC (1995) Quantification of myocardial blood flow using dynamic nitrogen-13-ammonia PET studies and factor analysis of dynamic structures. J Nucl Med 36:2087–2093

    CAS  PubMed  Google Scholar 

  12. Nickles R, Nunn A, Stone C, Christian B (1993) Technetium-94m-teboroxime: synthesis, dosimetry and initial PET imaging studies. J Nucl Med 34:1058–1066

    CAS  PubMed  Google Scholar 

  13. Herrero P, Markham J, Weinheimer CJ, Anderson CJ, Welch MJ, Green MA, Bergmann SR (1993) Quantification of regional myocardial perfusion with generator-produced 62G1-PTSM and positron emission tomography. Circulation 87:173–183

    CAS  PubMed  Google Scholar 

  14. Herrero P, Hartman JJ, Green MA, Anderson CJ, Welch MJ, Markham J, Bergmann SR (1996) Regional myocardial perfusion assessed with generator-produced copper-62-PTSM and PET. J Nucl Med 37:1294–1300

    CAS  PubMed  Google Scholar 

  15. Crone C (1963) Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 58:292–305

    CAS  PubMed  Google Scholar 

  16. Renkin EM (1959) Transport of potassium-42 from blood tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    CAS  PubMed  Google Scholar 

  17. Kuhle W, Porenta G, Huang S-C, Buxton D, Gambhir S, Hansen H, Phelps M, Schelbert H (1992) Quantification of regional myocardial blood flow using i3N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 86:1004–1017

    CAS  PubMed  Google Scholar 

  18. Rosenspire KC, Schwaiger M, Mangner TJ, Hutchins GD, Sutorik A, Kuhl DE (1990) Metabolic fate of [13 N] ammonia in human and canine blood. J Nucl Med 31:163–167

    CAS  PubMed  Google Scholar 

  19. Araujo L, Lammertsma A, Rhodes C, McFalls E, Iida H, Rechavia E, Galassi A, De Silva R, Jones T, Maseri A (1991) Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83:875–885

    CAS  PubMed  Google Scholar 

  20. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN (1989) Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652

    CAS  PubMed  Google Scholar 

  21. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR (1990) Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation 82:1377–86

    CAS  PubMed  Google Scholar 

  22. Herrero P, Markham J, Shelton ME, Bergmann SR (1992) Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 70:496–507

    CAS  PubMed  Google Scholar 

  23. Bellina CR, Parodi O, Camici P, Salvadori PA, Taddei L, Fusani L, Guzzardi R, Klassen GA, L’Abbate AL, Donato L (1990) Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med 31: 1335–1343

    CAS  PubMed  Google Scholar 

  24. Bol A, Melin JA, Vanoverschelde J-L, Baudhuin T, Vogelaers D, De Pauw M, Michel C, Luxen A, Labar D, Cogneau M, Robert A, Heyndrickx GR, Wijns W (1993) Direct comparison of [13N] ammonia and [15O] water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 87:512–525

    CAS  PubMed  Google Scholar 

  25. Muzik O, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M (1993) Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34:83–91

    CAS  PubMed  Google Scholar 

  26. Merlet P, Mazoyer B, Hittinger L, Valette H, Saal J, Bendriem B, Crozatier B, Castaigne A, Syrota A, Rande J (1993) Assessment of coronary reserve in man: comparison between positron emission tomography with oxygen-15-labeled water and intracoronary doppler technique. J Nucl Med 34:1899–1904

    CAS  PubMed  Google Scholar 

  27. Bergmann SR, Chou R-L, Lin J-W, Herrero P, Sciacca RR (1997) Quantitation of myocardial blood flow in human subjects using rubidium-82 (abstract). Circulation 96:1537

    Google Scholar 

  28. Nagamachi S, Czernin J, Kim AS, Sun KT, Bottcher M, Phelps ME, Schelbert HR (1996) Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med 37:1626–1631

    CAS  PubMed  Google Scholar 

  29. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG (1999) Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15 O-labeled water and PET. J Nucl Med 40:1848–1856

    CAS  PubMed  Google Scholar 

  30. Iida H, Yokoyama I, Agostini D, Banno T, Kato T, Ito K, Kuwabara Y, Oda Y, Otake T, Tamura Y, Tadamura E, Yoshida T, Tamaki N (2000) Quantitative assessment of regional myocardial blood flow using oxygen-15-labelled water and positron emission tomography: a multicentre evaluation in Japan. Eur J Nucl Med 27:192–201

    CAS  PubMed  Google Scholar 

  31. Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR (1983) Measurements of regional tissue and blood pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med 24:987–996

    CAS  PubMed  Google Scholar 

  32. Iida H, Rhodes C, de Silva R, Yamamoto Y, Araujo L, Maseri A, Jones T (1991) Myocardial tissue fraction — correction for partial volume effects and measure of tissue viability. J Nucl Med 32: 2169–2175

    CAS  PubMed  Google Scholar 

  33. Gerber BL, Melin JA, Bol A, Labar D, Cogneau M, Michel C, Vanoverschelde JL (1998) Nitrogen-13-ammonia and oxygen-15-water estimates of absolute myocardial perfusion in left ventricular ischemic dysfunction. J Nucl Med 39:1655–1662

    CAS  PubMed  Google Scholar 

  34. Nitzsche EU, Choi Y, Czernin J, Hoh CK, Huang SC, Schelbert HR (1996) Noninvasive quantification of myocardial blood flow in humans: a direct comparison of the 13N ammonia and the 15O water techniques. Circulation 93:2000–2006

    CAS  PubMed  Google Scholar 

  35. Brown BG, Josephson MA, Peterson RB, Pierce CD, Wong M, Hecht HS, Bolson E, Dodge HT (1981) Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 48:1077–1085

    CAS  PubMed  Google Scholar 

  36. Wilson R, Laughlin D, Ackell P (1985) Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72:82–89

    CAS  PubMed  Google Scholar 

  37. Chan S, Brunken R, Czernin J, Porenta G, Kuhle W, Krivokapich J, Phelps M, Schelbert H (1992) Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 20:979–985

    CAS  PubMed  Google Scholar 

  38. He Z-H, Cwaijg E, Hwang W, Hartley CJ, Funk E, Michael LH, Verani MS (2000) Myocardial blood flow and myocardial uptake of 201TI and 99mTc sestamibi during coronary vasodilation induced by CGS-21680, a selective adenosine A2A receptor agonist. Circulation 102:436–444

    Google Scholar 

  39. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging (see comments). N Engl J Med 323:141–146

    CAS  PubMed  Google Scholar 

  40. Rocco TP, Dilsizian V, McKusick KA, Fischman AJ, Boucher CA, Strauss HW (1990) Comparison of thallium redistribution with rest “reinjection” imaging for the detection of viable myocardium. Am J Cardiol 66:158–163

    CAS  PubMed  Google Scholar 

  41. Taillefer R, Gagnon A, Laflamme L, Grégoire J, Leveille J, Phaneuf DC (1989) Same-day injections of Tc-99m methoxy isobutyl isoni-trile (hexamibi) for myocardial tomographic imaging: comparison between rest-stress and stress-rest injection sequences. Eur J Nucl Med 15:113–117

    CAS  PubMed  Google Scholar 

  42. Berman DS, Kiat H, Maddahi J (1991) The new 99m Tc myocardial perfusion imaging agents: 99m Tc sestamibi and 99m Tc teborox-ime. Circulation 84:17–121

    Google Scholar 

  43. Melon PG, Brihaye C, Degueldre C, Guillaume M, Czichosz R, Rigo P, Kulbertus HE, Comar D (1994) Myocardial kinetics of potassium-38 in humans and comparison with copper-62-PTSM (see comments). J Nucl Med 35:1116–1122

    CAS  PubMed  Google Scholar 

  44. Cooke CD, Vansant JP, Krawczynska EG, Faber TL, Garcia EV (1997) Clinical validation of three-dimensional color-modulated displays of myocardial perfusion (see comments). J Nucl Cardiol 4:108–116

    CAS  PubMed  Google Scholar 

  45. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, Lewin HC, Berman DS (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med 41:712–719

    CAS  PubMed  Google Scholar 

  46. Klein JL, Hoff JG, Peifer JW, Folks R, Cooke CD, King SB III, Garcia EV (1998) A quantitative evaluation of the three dimensional reconstruction of patients’ coronary arteries. Int J Cardiac Imaging 14:75–87

    CAS  Google Scholar 

  47. Santana CA, Soler M, Cooke CD, Faber TL, Krawczynska EG, Folks RD, Klein JL, Candell-Riera J, Garcia EV (2000) Determination of left ventricular ejection fraction (LVEF) from ECG-gated FDG PET studies: validation with contrast ventriculography. J Nucl Med 41:163p

    Google Scholar 

  48. Sharir T, Germano G, Waechter PB, Kavanagh PB, Areeda JS, Gerlach J, Kang X, Lewin HC, Berman DS (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med 41:720–727

    CAS  PubMed  Google Scholar 

  49. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M (1998) Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 25:1313–1321

    CAS  PubMed  Google Scholar 

  50. Porenta G, Kuhle W, Czernin J, Ratib O, Brunken RC, Phelps ME, Schelbert HR (1992) Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 33:1628–1636

    CAS  PubMed  Google Scholar 

  51. Blanksma PK, Willemsen AT, Meeder JG, de Jong RM, Anthonio RL, Pruim J, Vaalburg W, Lie KI (1995) Quantitative myocardial mapping of perfusion and metabolism using parametric polar map displays in cardiac PET. J Nucl Med 36:153–158

    CAS  PubMed  Google Scholar 

  52. Gould KL (1996) Myocardial perfusion after cholesterol lowering. J Atheroscler Thromb 3:59–61

    CAS  PubMed  Google Scholar 

  53. Hicks K, Ganti G, Mullani N, Gould KL (1989) Automated quantitation of three-dimensional cardiac positron emission tomography for routine clinical use (published erratum appears in J Nucl Med 1990,31:251–252). J Nucl Med 30:1787–1797

    CAS  PubMed  Google Scholar 

  54. Laubenbacher C, Rothley J, Sitomer J, Beanlands R, Sawada S, Sutor R, Muller D, Schwaiger M (1993) An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using nitro-gen-13-ammonia (see comments). J Nucl Med 34:968–978

    CAS  PubMed  Google Scholar 

  55. Belier G (1995) Clinical nuclear cardiology. Saunders, Philadelphia

    Google Scholar 

  56. Beller GA, Zaret BL (2000) Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 101:1465–1478

    CAS  PubMed  Google Scholar 

  57. Gerson MC (1997) Cardiac nuclear medicine. McGraw-Hill, Health Professions Division, New York

    Google Scholar 

  58. Iskandrian AS, Verani MS (1996) Nuclear cardiac imaging: principles and applications. Davis, Philadelphia

    Google Scholar 

  59. Iskandrian AE, Verani MS (1998) New developments in cardiac nuclear imaging. Futura, Armonk

    Google Scholar 

  60. Iskandrian AS, Heo J, Kong B, Lyons E, Marsch S (1989) Use of tech-netium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol 64:270–275

    CAS  PubMed  Google Scholar 

  61. Kahn JK, McGhie I, Akers MS, Sills MN, Faber TL, Kulkarni PV, Willerson JT, Corbett JR (1989) Quantitative rotational tomography with 201TI and 99m Tc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 79:1282–1293

    CAS  PubMed  Google Scholar 

  62. Kiat H, Maddahi J, Roy LT, Van Train K, Friedman J, Resser K, Berman DS (1989) Comparison of technetium 99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 117:1–11

    CAS  PubMed  Google Scholar 

  63. Uhl GS, Kay TN, Hickman JR Jr, Montgomery MA, McGranahan GM (1980) Detection of coronary artery disease in asymptomatic aircrew members with thallium-201 scintigraphy. Aviat Space Environ Med 51:1250–1255

    CAS  PubMed  Google Scholar 

  64. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction (published erratum appears in Circulation 1998, 98:190). Circulation 97: 535–543

    CAS  PubMed  Google Scholar 

  65. Gibbons RJ, Hodge DO, Berman DS, Akinboboye OO, Heo J, Hachamovitch R, Bailey KR, Iskandrian AE (1999) Long-term outcome of patients with intermediate-risk exercise electrocardiograms who do not have myocardial perfusion defects on radionuclide imaging. Circulation 100:2140–2145

    CAS  PubMed  Google Scholar 

  66. Brown KA, Boucher CA, Okada RD, Guiney TE, Newell JB, Strauss HW, Pohost GM (1983) Prognostic value of exercise thallium-201 imaging in patients presenting for evaluation of chest pain. J Am Coll Cardiol 1:994–1001

    CAS  PubMed  Google Scholar 

  67. Iskandrian AS, Hakki AH, Kane-Marsch S (1985) Prognostic implications of exercise thallium-201 scintigraphy in patients with suspected or known coronary artery disease. Am Heart J 110:135–143

    CAS  PubMed  Google Scholar 

  68. Ladenheim ML, Pollock BH, Rozanski A, Berman DS, Staniloff HM, Forrester JS, Diamond GA (1986) Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol 7:464–471

    CAS  PubMed  Google Scholar 

  69. Staniloff HM, Forrester JS, Berman DS, Swan HJ (1986) Prediction of death, myocardial infarction, and worsening chest pain using thallium scintigraphy and exercise electrocardiography. J Nucl Med 27:1842–1848

    CAS  PubMed  Google Scholar 

  70. Boucher CA, Brewster DC, Darling RC, Okada RD, Strauss HW, Pohost GM (1985) Determination of cardiac risk by dipyridamole-thallium imaging before peripheral vascular surgery. N Engl J Med 312:389–394

    CAS  PubMed  Google Scholar 

  71. Eagle KA, Coley CM, Newell JB, Brewster DC, Darling RC, Strauss HW, Guiney TE, Boucher CA (1989) Combining clinical and thallium data optimizes preoperative assessment of cardiac risk before major vascular surgery. Ann Intern Med 110:859–866

    CAS  PubMed  Google Scholar 

  72. Leppo J, Plaja J, Gionet M, Tumolo J, Paraskos JA, Cutler BS (1987) Noninvasive evaluation of cardiac risk before elective vascular surgery. J Am Coll Cardiol 9:269–276

    CAS  PubMed  Google Scholar 

  73. Kontos MC, Jesse RL, Schmidt KL, Ornato JP, Tatum JL (1997) Value of acute rest sestamibi perfusion imaging for evaluation of patients admitted to the emergency department with chest pain. J Am Coll Cardiol 30:976–82

    CAS  PubMed  Google Scholar 

  74. Kontos MC, Anderson FP, Schmidt KA, Ornato JP, Tatum JL, Jesse RL (1999) Early diagnosis of acute myocardial infarction in patients without ST-segment elevation. Am J Cardiol 83:155–158

    CAS  PubMed  Google Scholar 

  75. Gibbons RJ, Verani MS, Behrenbeck T, Pellikka PA, O’Connor MK, Mahmarian JJ, Chesebro JH, Wackers FJ (1989) Feasibility of tomographic 99m Tc-hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 80:1277–1286

    CAS  PubMed  Google Scholar 

  76. Gibbons RJ, Christian TF, Hopfenspirger M, Hodge DO, Bailey KR (1994) Myocardium at risk and infarct size after thrombolytic therapy for acute myocardial infarction: implications for the design of randomized trials of acute intervention. J Am Coll Cardiol 24:616–623

    CAS  PubMed  Google Scholar 

  77. Gibbons RJ, Miller TD, Christian TF (2000) Infarct size measured by single photon emission computed tomographic imaging with (99 m)Tc-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation 101:101–108

    CAS  PubMed  Google Scholar 

  78. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ (1995) Infarct size after acute myocardial infarction measured by quantitative tomographic 99m Tc sestamibi imaging predicts subsequent mortality (see comments). Circulation 92: 334–341

    CAS  PubMed  Google Scholar 

  79. Schwartz RG, Pearson TA (1997) Can single photon emission computed tomography myocardial perfusion imaging monitor the potential benefit of aggressive treatment of hyperlipidemia? (Editorial) J Nucl Cardiol 4:555–568

    CAS  PubMed  Google Scholar 

  80. Gould KL, Ornish D, Scherwitz L, Brown S, Edens RP, Hess MJ, Mullani N, Bolomey L, Dobbs F, Armstrong WT et al (1995) Changes in myocardial perfusion abnormalities by positron emission tomography after long-term, intense risk factor modification (see comments). J Am Med Assoc 274:894–901

    CAS  Google Scholar 

  81. Blumenthal RS, Bellan JA, Becker DM, Yook RM, Moy TF, Aversano TA, Coombs VJ, Becker LC (2000) Exercise thallium testing predicts significant coronary disease on angiography in asymptomatic siblings of persons with premature heart disease. J Am Coll Cardiol 35:447A–448A

    Google Scholar 

  82. Blumenthal RS, Becker DM, Moy TF, Coresh J, Wilder LB, Becker LC (1996) Exercise thallium tomography predicts future clinically manifest coronary heart disease in a high-risk asymptomatic population. Circulation 93:915–923

    CAS  PubMed  Google Scholar 

  83. Holmberg S, Serzysko W, Varnauskas E (1971) Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med Scand 190:465–480

    CAS  PubMed  Google Scholar 

  84. Krivokapich J, Smith GT, Huang SC, Hoffman EJ, Ratib O, Phelps ME, Schelbert HR (1989) 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography (see comments). Circulation 80:1328–1337

    CAS  PubMed  Google Scholar 

  85. Krivokapich J, Huang SC, Schelbert HR (1993) Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate. Am J Cardiol 71:1351–1356

    CAS  PubMed  Google Scholar 

  86. Czernin J, Müller P, Chan S, Brunken R, Porenta G, Krivokapich J, Chen K, Chan A, Phelps M, Schelbert H (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69

    CAS  PubMed  Google Scholar 

  87. Senneff M, Geltman E, Bergmann S, Hartman J (1991) Noninvasive delineation of the effects of moderate aging on myocardial perfusion. J Nucl Med 32:2037–2042

    CAS  PubMed  Google Scholar 

  88. Uren NG, Camici PG, Melin JA, Bol A, de Bruyne B, Radvan J, Olivotto I, Rosen SD, Impallomeni M, Wijns W (1995) Effect of aging on myocardial perfusion reserve. J Nucl Med 36:2032–2036

    CAS  PubMed  Google Scholar 

  89. Böttcher M, Czernin J, Sun K, Phelps M, Schelbert H (1997) Effect of B1 adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity. J Nucl Med 38:442–446

    PubMed  Google Scholar 

  90. Czernin J, Sun K, Bottcher M, Brunken RC, Phelps ME, Schelbert HR (1994) Acute smoking reduces the myocardial flow reserve in smokers. Circulation 90:1101

    Google Scholar 

  91. Czernin J, Auerbach M, Sun KT, Phelps M, Schelbert HR (1995) Effects of modified pharmacologic stress approaches on hyper-emic myocardial blood flow. J Nucl Med 36:575–580

    CAS  PubMed  Google Scholar 

  92. Böttcher M, Czernin J, Sun K, Phelps M, Schelbert H (1995) Effect of caffeine on myocardial blood flow at rest and during pharmacological vasodilation. J Nucl Med 36:2016–2021

    PubMed  Google Scholar 

  93. Müller P, Czernin J, Choi Y, Aguilar F, Nitzsche E, Buxton D, Sun K, Phelps M, Huang S-C, Schelbert H (1994) Effect of exercise supplementation during adenosine infusion on hyperemic blood flow and flow reserve. Am Heart J 128:52–60

    PubMed  Google Scholar 

  94. Marcus M (1983) Methods of calculating coronary vascular resistance. In: Marcus M (ed) The coronary circulation in health and disease. McGraw-Hill, New York, pp 107–109

    Google Scholar 

  95. Holmvang G, Fry S, Skopicki HA, Abraham SA, Alpert NM, Fischman AJ, Picard MH, Gewirtz H (1999) Relation between coronary “steal” and contractile function at rest in collateral-dependent myocardium of humans with ischemic heart disease. Circulation 99:2510–2516

    CAS  PubMed  Google Scholar 

  96. Sambuceti G, Parodi O, Marcassa C, Neglia D, Salvadori P, Giorgetti A, Bellina RC, Di Sacco S, Nista N, Marzullo P et al (1993) Alteration in regulation of myocardial blood flow in one-vessel coronary artery disease determined by positron emission tomography. Am J Cardiol 72:538–543

    CAS  PubMed  Google Scholar 

  97. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, Phelps ME, Schelbert HR (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery diseases. Circulation 91:1944–1951

    PubMed  Google Scholar 

  98. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M (1998) Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 99:475–481

    Google Scholar 

  99. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330:1782–1788

    CAS  PubMed  Google Scholar 

  100. Beanlands RS, Muzik O, Melon P, Sutor R, Sawada S, Muller D, Bondie D, Hutchins GD, Schwaiger M (1995) Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 26:1465–1475

    CAS  PubMed  Google Scholar 

  101. Muzik O, Duvernoy C, Beanlands RS, Sawada S, Dayanikli F, Wolfe ER Jr, Schwaiger M (1998) Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 31:534–540

    CAS  PubMed  Google Scholar 

  102. Vanoverschelde JL, Wijns W, Deprae C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium (see comments). Circulation 87:1513–1523

    CAS  PubMed  Google Scholar 

  103. Kosa I, Blasini R, Schneider-Eicke J, Dickfeld T, Neumann FJ, Ziegler S, Matsunari I, Neverve J, Schoemig A, Schwaiger M (1999) Early recovery of coronary flow reserve after stent implantation as assessed by positron emission tomography. J Am Coll Cardiol 34: 1036–1041

    CAS  PubMed  Google Scholar 

  104. Uren NG, Crake T, Lefroy DC, DeSilva R, Davies GJ, Maseri A (1993) Delayed recovery of coronary resistive vessel function after coronary angioplasty. J Am Coll Cardiol 21:612–621

    CAS  PubMed  Google Scholar 

  105. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP (1988) Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77:43–52

    CAS  PubMed  Google Scholar 

  106. Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A (1993) Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms (see comments). N Engl J Med 328:1659–1664

    CAS  PubMed  Google Scholar 

  107. Zeiher AM, Drexler H, Wollschlager H, Just H (1991) Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83:391–401

    CAS  PubMed  Google Scholar 

  108. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M (1994) Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 90:808–817

    CAS  PubMed  Google Scholar 

  109. Duvernoy CS, Meyer C, Seifert-Klauss V, Dayanikli F, Matsunari I, Rattenhuber J, Hoss C, Graeff H, Schwaiger M (1999) Gender differences in myocardial blood flow dynamics: lipid profile and hemodynamic effects. J Am Coll Cardiol 33:463–470

    CAS  PubMed  Google Scholar 

  110. Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG (2000) Low-density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 36:103–109

    CAS  PubMed  Google Scholar 

  111. Pitkanen O-P, Nuutila P, Raitakari OT, Porkka K, Ronnemaa T, Viikari J, Taskinen M-R, Ehnholm C, Knuuti J (1998) Coronary reactivity in young men with familial combined hyperlipidaemia. Eur Heart J 19:547

    Google Scholar 

  112. Pitkänen OP, Raitakari OT, Niinikoski H, Nuutila P, Iida H, Voipio-Pulkki LM, Hearkeonen R, Wegelius U, Reonnemaa T, Viikari J, Knuuti J (1996) Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 28:1705–1711

    PubMed  Google Scholar 

  113. Yokoyama I, Murakami T, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Omata M (1996) Reduced coronary flow reserve in familial hypercholesterolemia. J Nucl Med 37:1937–1942

    CAS  PubMed  Google Scholar 

  114. Yokoyama I, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Omata M (1996) Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 94:3232–3238

    CAS  PubMed  Google Scholar 

  115. Yokoyama I, Ohtake T, Momomura S, Yonekura K, Kobayakawa N, Aoyagi T, Sugiura S, Sasaki Y, Omata M (1998) Altered myocardial vasodilatation in patients with hypertriglyceridemia in anatomically normal coronary arteries. Arterioscler Thromb Vasc Biol 18: 294–299

    CAS  PubMed  Google Scholar 

  116. Laine H, Raitakari OT, Niinikoski H, Pitkanen OP, Iida H, Viikari J, Nuutila P, Knuuti J (1998) Early impairment of coronary flow reserve in young men with borderline hypertension. J Am Coll Cardiol 32:147–153

    CAS  PubMed  Google Scholar 

  117. Pitkanen O-P, Raitakari OT, Ronnemaa T, Niinikoski H, Nuutila P, Iida H, Viikari JSA, Knuuti J (1997) Influence of cardiovascular risk status on coronary flow reserve in healthy young men. Am J Cardiol 79:1690–1692

    CAS  PubMed  Google Scholar 

  118. Pitkanen O-P, Nuutila P, Raitakari OT, Ronnemaa T, Koskinen PJ, Iida H, Lehtimaki TJ, Laine HK, Takala T, Viikari JSA, Knuuti J (1998) Coronary flow reserve is reduced in young men with IDDM. Diabetes 47:248–254

    CAS  PubMed  Google Scholar 

  119. Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, Omata M (1997) Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 30:1472–1477

    CAS  PubMed  Google Scholar 

  120. Yokoyama I, Ohtake T, Momomura S, Yonekura K, Woo-Soo S, Nishikawa J, Sasaki Y, Omata M (1998) Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 47:119–124

    CAS  PubMed  Google Scholar 

  121. Yokoyama I, Yonekura K, Ohtake T, Yang W, Shin WS, Yamada N, Ohtomo K, Nagai R (2000) Coronary microangiopathy in type 2 diabetic patients: relation to glycémie control, sex, and microvascular angina rather than to coronary artery disease. J Nucl Med 41:978–985

    CAS  PubMed  Google Scholar 

  122. Laine H, Nuutila P, Luotolahti M, Meyer C, Ronnemaa T, Knuuti J (2000) Insulin-induced increment of coronary flow reserve is not abolished by dexamethasone in healthy young men. J Am Coll Cardiol 35:419A

    Google Scholar 

  123. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H (1989) Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium (see comments). J Am Coll Cardiol 14:1181–1190

    CAS  PubMed  Google Scholar 

  124. Smits P, Williams S, Lipson D, Banitt P, Rongen G, Creager M (1995) Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation 92:2135–2141

    CAS  PubMed  Google Scholar 

  125. Bache RJ (1998) Vasodilator reserve: a functional assessment of coronary health (editorial; comment). Circulation 98:1257–1260

    CAS  PubMed  Google Scholar 

  126. Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, Deeb M, Wolfe E Jr, Wieland DM (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography (see comments). Circulation 82:457–464

    CAS  PubMed  Google Scholar 

  127. Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, Levine TB (1997) Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 336:1208–1215

    PubMed  Google Scholar 

  128. Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, Grunberger G (1999) Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 100:813–819

    PubMed  Google Scholar 

  129. Stevens MJ, Dayanikli F, Raffel DM, Allman KC, Sandford T, Feldman EL, Wieland DM, Corbett J, Schwaiger M (1998) Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 31:1575–1584

    CAS  PubMed  Google Scholar 

  130. Campisi R, Czernin J, Schoder H, Sayre JW, Marengo FD, Phelps ME, Schelbert HR (1998) Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 98:119–125

    CAS  PubMed  Google Scholar 

  131. Schoder H, Silverman DH, Campisi R, Sayre JW, Phelps ME, Schelbert HR, Czernin J (2000) Regulation of myocardial blood flow response to mental stress in healthy individuals. Am J Physiol 278: H360-H366

    Google Scholar 

  132. Schoder H, Silverman DH, Campisi R, Karpman H, Phelps ME, Schelbert HR, Czernin J (2000) Effect of mental stress on myocardial blood flow and vasomotion in patients with coronary artery disease. J Nucl Med 41:11–16

    CAS  PubMed  Google Scholar 

  133. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M, Parker N, Mullani N, Kirkeeide R (2000) Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 101:1931–1939

    CAS  PubMed  Google Scholar 

  134. Pampaloni MH, Keng FY, Kudoh T, Sayre JS, Schelbert HR (2000) Noninvasive assessment of abnormal coronary perfusion gradient by positron emission tomography in subjects with coronary risk factors. J Nucl Med 41:166P

    Google Scholar 

  135. Czernin J, Barnard RJ, Sun KT, Krivokapich J, Nitzsche E, Dorsey D, Phelps ME, Schelbert HR (1995) Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 92:197–204

    CAS  PubMed  Google Scholar 

  136. Hambrecht R, Gielen S, Linke A, Fiehn E, Yu J, Walther C, Schoene N, Schuler G (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA 283:3095–3101

    CAS  PubMed  Google Scholar 

  137. Smith SC Jr (1996) Risk-reduction therapy: the challenge to change. Presented at the 68th scientific sessions of the American Heart Association, 13 Nov 1995 Anaheim, California. Circulation 93:2205–2211

    PubMed  Google Scholar 

  138. Mellwig KP, Baller D, Gleichmann U, Moll D, Betker S, Weise R, Notohamiprodjo G (1998) Improvement of coronary vasodilatation capacity through single LDL apheresis. Atherosclerosis 139: 173–178

    CAS  PubMed  Google Scholar 

  139. Huggins GS, Pasternak RC, Alpert NM, Fischman AJ, Gewirtz H (1998) Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reserve. Circulation 98:1291–1296

    CAS  PubMed  Google Scholar 

  140. Yokoyama I, Momomura S, Ohtake T, Yonekura K, Yang W, Kobayakawa N, Aoyagi T, Sugiura S, Yamada N, Ohtomo K, Sasaki Y, Omata M, Yazaki Y (1999) Improvement of impaired myocardial vasodilatation due to diffuse coronary atherosclerosis in hyper-cholesterolemics after lipid-lowering therapy. Circulation 100: 117–122

    CAS  PubMed  Google Scholar 

  141. Bailer D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J (1999) Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 99:2871–2875

    Google Scholar 

  142. Campisi R, Czernin J, Schoder H, Sayre JW, Schelbert HR (1999) L-Arginine normalizes coronary vasomotion in long-term smokers. Circulation 99:491–497

    CAS  PubMed  Google Scholar 

  143. Kurz S, Harrison DG (1997) Insulin and the arginine paradox (editorial). J Clin Invest 99:369–370

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Boger RH, Bode-Boger SM, Sydow K, Heistad DD, Lentz SR (2000) Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arte-rioscler Thromb Vasc Biol 20:1557–1564

    CAS  Google Scholar 

  145. Boger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98:1842–1847

    CAS  PubMed  Google Scholar 

  146. Pampaloni MH, Hsueh WA, Quinones M, Sayre JS, Schelbert HR (2000) PET determined myocardial blood flow demonstrates abnormal coronary vasomotion in insulin resistance without diabetes. J Nucl Med 41:44p

    Google Scholar 

  147. Hsueh WA, Law RE (1999) Insulin signaling in the arterial wall. Am J Cardiol 84:21j-24j

    Google Scholar 

  148. Campisi R, Nathan L, Hernandez PM, Sayre JW, Schoeder H, Chaudhuri G, Schelbert HR (1999) Effect of chronic hormone replacement therapy on coronary vasomotion in postmenopausal women. Circulation no:122i

    Google Scholar 

  149. Campisi R, Nathan L, Pampaloni MH, Schoder H, Sayre JW, Chaudhuri G, Schelbert HR (2000) PET-based measurements of myocardial blood flow for evaluating coronary microcirculatory function after menopause and effects of long-term hormone replacement therapy. J Nucl Med 41:4p

    Google Scholar 

  150. Vita JA, Yeung AC, Winniford M, Hodgson JM, Treasure CB, Klein JL, Werns S, Kern M, Plotkin D, Shih WJ, Mitchel Y, Ganz P (2000) Effect of cholesterol-lowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease. Circulation 102:846–851

    CAS  PubMed  Google Scholar 

  151. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–906

    CAS  PubMed  Google Scholar 

  152. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101: 948–954

    CAS  PubMed  Google Scholar 

  153. Radvan J, Choudhury L, Sheridan DJ, Camici PG (1997) Comparison of coronary vasodilator reserve in elite rowing athletes versus hypertrophic cardiomyopathy. Am J Cardiol 80:1621–1623

    CAS  PubMed  Google Scholar 

  154. Choudhury L, Rosen SD, Patel D, Nihoyannopoulos P, Camici PG (1997) Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J 18:108–116

    CAS  PubMed  Google Scholar 

  155. Nienaber CA, Gambhir SS, Mody FV, Ratib O, Huang SC, Phelps ME, Schelbert HR (1993) Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy. Circulation 87:1580–1590

    CAS  PubMed  Google Scholar 

  156. Lorenzoni R, Gistri R, Cecchi F, Olivotto I, Chiriatti G, Elliott P, McKenna WJ, Camici PG (1998) Coronary vasodilator reserve is impaired in patients with hypertrophic cardiomyopathy and left ventricular dysfunction. Am Heart J 136:972–981

    CAS  PubMed  Google Scholar 

  157. Weismüller S, Czernin J, Sun KT, Fung C, Phelps ME, Schelbert HR (1996) Coronary vasodilatory capacity is impaired in patients with dilated cardiomyopathy. Am J Cardiac Imaging 10:154–162

    Google Scholar 

  158. Drzezga AE, Blasini R, Ziegler SI, Bengel FM, Picker W, Schwaiger M (2000) Coronary microvascular reactivity to sympathetic stimulation in patients with idiopathic dilated cardiomyopathy. J Nucl Med 41:837–844

    CAS  PubMed  Google Scholar 

  159. Camici PG, Gistri R, Lorenzoni R, Sorace O, Michelassi C, Bongiorni MG, Salvadori PA, L’Abbate A (1992) Coronary reserve and exercise ECG in patients with chest pain and normal coronary angiograms. Circulation 86:179–186

    CAS  PubMed  Google Scholar 

  160. Rosen SD, Uren NG, Kaski JC, Tousoulis D, Davies GJ, Camici PG (1994) Coronary vasodilator reserve, pain perception, and sex in patients with syndrome X. Circulation 90:50–60

    CAS  PubMed  Google Scholar 

  161. Shelton ME, Senneff MJ, Ludbrook PA, Sobel BE, Bergmann SR (1993) Concordance of nutritive myocardial perfusion reserve and flow velocity reserve in conductance vessels in patients with chest pain with angiographically normal coronary arteries. J Nucl Med 34:717–722

    CAS  PubMed  Google Scholar 

  162. Galassi A, Crea F, Araujo L, Lammertsma A, Pupita G, Yamamoto Y, Rechavia E, Jones T, Kaski J, Maseri A, Taylor C, Lewington G (1993) Comparison of regional myocardial blood flow in syndrome X and one-vessel coronary artery disease. Am J Cardiol 72:134–139

    CAS  PubMed  Google Scholar 

  163. Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, Uabbate A (1994) Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther 8:221–226

    CAS  PubMed  Google Scholar 

  164. Rosen SD, Lorenzoni R, Kaski J-C, Foale RA, Camici PG (1999) Effect of alphai-adrenoceptor blockade on coronary vasodilator reserve in cardiac syndrome X. J Cardiovasc Pharmacol 34:554–560

    CAS  PubMed  Google Scholar 

  165. Brunken RC, Campisi R, Perloff JK, Czernin J, Child JS, Schelbert HR (2000) Do patients with cyanotic congenital heart disease have an impaired microcirculatory response to stress? A quantitative 13N-ammonia PET study. J Nucl Med 41:152p

    Google Scholar 

  166. Arias-Stella J, Topilsky M (1971) Anatomy of the coronary circulation at high altitude. In: Porter R, Knight J (eds) Cardiac and respiratory aspects. Churchill-Livingstone, London, pp 149–157

    Google Scholar 

  167. Allada V, Brunken RC, Laks H, Williams RG, Schelbert HR (1992) PET for the evaluation of cardiac function in neonates and children after arterial switch operation (abstract). J Nucl Med 33: 977

    Google Scholar 

  168. Bengel FM, Hauser M, Duvernoy CS, Kuehn A, Ziegler SI, Stollfuss JC, Beckmann M, Sauer U, Muzik O, Schwaiger M, Hess J (1998) Myocardial blood flow and coronary flow reserve late after anatomical correction of transposition of the great arteries. J Am Coll Cardiol 32:1955–1961

    CAS  PubMed  Google Scholar 

  169. Corbett JR (1999) Fatty acids for myocardial imaging. Semin Nucl Med 29:237–258

    CAS  PubMed  Google Scholar 

  170. Tateno M, Tamaki N, Yukihiro M, Kudoh T, Hattori N, Tadamura E, Nohara R, Suzuki T, Endo K, Konishi J (1996) Assessment of fatty acid uptake in ischemic heart disease without myocardial infarction. J Nucl Med 37:1981–1985

    CAS  PubMed  Google Scholar 

  171. Ng CK, Huang SC, Schelbert HR, Buxton DB (1994) Validation of a model for 1–11 C acetate as a tracer of cardiac oxidative metabolism. Am J Physiol 266:H1304-H1315

    Google Scholar 

  172. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR (1989) Regional myocardial oxygen consumption determined non-invasively in humans with [1–11C] acetate and dynamic positron tomography. Circulation 80:863–872

    CAS  PubMed  Google Scholar 

  173. Czernin J, Porenta G, Brunken R, Krivokapich J, Chen K, Bennett R, Hage A, Fung C, Tillisch J, Phelps ME, Schelbert HR (1993) Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation 88:884–895

    CAS  PubMed  Google Scholar 

  174. Gropler RJ, Siegel BA, Sampathkumaran K, Paerez JE, Sobel BE, Bergmann SR, Geltman EM (1992) Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 19:989–997

    CAS  PubMed  Google Scholar 

  175. Rosamond TL, Abendschein DR, Sobel BE, Bergmann SR, Fox KAA (1987) Metabolic fate of radiolabeled palmitate in ischemic canine myocardium: implications for positron emission tomography. J Nucl Med 28:1322–1329

    CAS  PubMed  Google Scholar 

  176. Schelbert HR, Henze E, Sochor H, Grossman RG, Huang SC, Barrio JR, Schwaiger M, Phelps ME (1986) Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 111:1055–1064

    CAS  PubMed  Google Scholar 

  177. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR (1982) Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 23:577–586

    CAS  PubMed  Google Scholar 

  178. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert HR (1986) Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888

    CAS  PubMed  Google Scholar 

  179. Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Deprae C, Flameng W, Melin JA (1997) Chronic myocardial hibernation in humans. From bedside to bench. Circulation 95:1961–1971

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schelbert, H.R. (2002). Myocardial Blood Flow and Perfusion: Radionuclide Techniques. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics