Skip to main content

The Family Nitrospiraceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Nitrospiraceae is the only established family in the phylum Nitrospirae and comprises the genera Nitrospira, Leptospirillum, and Thermodesulfovibrio. In phylogenetic trees based on 16S rRNA gene sequences Nitrospira and Leptospirillum consistently cluster together, whereas Thermodesulfovibrio forms a separate branch within the phylum. The family is physiologically highly diverse and contains chemolithoautotrophic aerobic nitrite-oxidizing bacteria (Nitrospira), chemolithoautotrophic aerobic and acidophilic ferrous iron oxidizers (Leptospirillum), and anaerobic, thermophilic, chemoorganoheterotrophic or hydrogenotrophic sulfate reducers (Thermodesulfovibrio). Members of the family occur in a wide range of natural and man-made ecosystems. In particular, the genus Nitrospira is almost ubiquitously distributed in oxic habitats and represents the predominant known nitrite oxidizers in nature, which catalyze the second step of nitrification and thus are essential for biogeochemical nitrogen cycling. All three genera are relevant for biotechnological processes. The genus Nitrospira contains the key nitrite oxidizers in biological wastewater treatment plants, whereas members of Leptospirillum are important iron oxidizers in the bioleaching of metal ores and are involved in acid mine drainage. Thermodesulfovibrio representatives occur in anaerobic digesters, where they contribute to the degradation of organic compounds and indirectly to the production of methane. Especially the members of Nitrospira and Leptospirillum are difficult to cultivate and most of their diversity has been detected by cultivation-independent molecular approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrews JH, Harris RF (1986) r- and K-selection and microbial ecology. Adv Microb Ecol 9:99–147

    Google Scholar 

  • Angelidaki I, Petersen SP, Ahring BK (1990) Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol 33:469–472

    CAS  PubMed  Google Scholar 

  • Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae sp nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    CAS  PubMed  Google Scholar 

  • Bartosch S, Hartwig C, Spieck E, Bock E (2002) Immunological detection of Nitrospira-like bacteria in various soils. Microb Ecol 43:26–33

    CAS  PubMed  Google Scholar 

  • Battaglia F, Morin D, Garcia JL, Ollivier P (1994) Isolation and study of 2 strains of Leptospirillum-like bacteria from a natural mixed population cultured on a cobaltiferous pyrite substrate. Antonie Van Leeuwenhoek 66:295–302

    CAS  PubMed  Google Scholar 

  • Battaglia-Brunet F, Clarens M, d’Hugues P, Godon JJ, Foucher S, Morin D (2002) Monitoring of a pyrite-oxidising bacterial population using DNA single-strand conformation polymorphism and microscopic techniques. Appl Microbiol Biotechnol 60:206–211

    CAS  PubMed  Google Scholar 

  • Bond PL, Druschel GK, Banfield JF (2000a) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000b) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burrell PC, Keller J, Blackall LL (1998) Microbiology of a nitrite-oxidizing bioreactor. Appl Environ Microbiol 64:1878–1883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    CAS  PubMed  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fueled metabolism. Nat Rev Microbiol 2:569–580

    CAS  PubMed  Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees C. Appl Environ Microbiol 68:838–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coram NJ, van Zyl LJ, Rawlings DE (2005) Isolation, sequence analysis, and comparison of two plasmids (28 and 29 kilobases) from the biomining bacterium Leptospirillum ferrooxidans ATCC 49879. Appl Environ Microbiol 71:7515–7522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF (2010) Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc Natl Acad Sci U S A 107:2383–2390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dillon JG, Fishbain S, Miller SR, Bebout BM, Habicht KS, Webb SM, Stahl DA (2007) High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms. Appl Environ Microbiol 73:5218–5226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebrahimi S, Morales FJF, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM (2005) High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material. Biotechnol Bioeng 90:462–472

    CAS  PubMed  Google Scholar 

  • Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, Hu B, McGuire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179

    CAS  Google Scholar 

  • Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol 164:16–23

    CAS  PubMed  Google Scholar 

  • Fujimura R, Sato Y, Nishizawa T, Oshima K, Kim SW, Hattori M, Kamijo T, Ohta H (2012a) Complete genome sequence of Leptospirillum ferrooxidans strain C2-3, isolated from a fresh volcanic ash deposit on the island of Miyake, Japan. J Bacteriol 194:4122–4123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujimura R, Sato Y, Nishizawa T, Nanba K, Oshima K, Hattori M, Kamijo T, Ohta H (2012b) Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site. Microbes Environ 27:19–29

    PubMed Central  PubMed  Google Scholar 

  • Garrity GM, Holt JG (2001) Phylum BVIII. Nitrospirae phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, p 451

    Google Scholar 

  • Gieseke A, Bjerrum L, Wagner M, Amann R (2003) Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ Microbiol 5:355–369

    CAS  PubMed  Google Scholar 

  • Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goebel BM, Stackebrandt E (1995) Molecular analysis of the microbial biodiversity in a natural acidic environment. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (eds) Biohydrometallurgical processing II. University of Chile, Santiago, pp 43–52

    Google Scholar 

  • Golovacheva RS, Golyshina OV, Karavaiko GI, Dorofeev AG, Pivovarova TA, Chernykh NA (1992) A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans sp. nov. Microbiology 61:744–750

    Google Scholar 

  • Goltsman DS, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, Mueller RS, Dick GJ, Sun CL, Wheeler KE, Zemla A, Baker BJ, Hauser L, Land M, Shah MB, Thelen MP, Hettich RL, Banfield JF (2009) Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing “Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol 75:4599–4615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Toril E, Martinez-Frias J, Gomez Gomez JM, Rull F, Amils R (2005) Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms. Astrobiology 5:406–414

    CAS  PubMed  Google Scholar 

  • Graham DW, Knapp CW, Van Vleck ES, Bloor K, Lane TB, Graham CE (2007) Experimental demonstration of chaotic instability in biological nitrification. ISME J 1:385–393

    CAS  PubMed  Google Scholar 

  • Haouari O, Fardeau ML, Cayol JL, Fauque G, Casiot C, Elbaz-Poulichet F, Hamdi M, Ollivier B (2008) Thermodesulfovibrio hydrogeniphilus sp nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. Syst Appl Microbiol 31:38–42

    CAS  PubMed  Google Scholar 

  • Harrison AP, Norris PR (1985) Leptospirillum ferrooxidans and similar bacteria—some characteristics and genomic diversity. FEMS Microbiol Lett 30:99–102

    CAS  Google Scholar 

  • Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC, Mitchell R (1994) Characterization of a new thermophilic sulfate-reducing bacterium—Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69

    CAS  PubMed  Google Scholar 

  • Henze M, Harremoës P, la Cour Jansen J, Arvin E (1997) Wastewater treatment. Springer, Berlin

    Google Scholar 

  • Hippe H (2000) Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 50:501–503

    PubMed  Google Scholar 

  • Holmes AJ, Tujula NA, Holley M, Contos A, James JM, Rogers P, Gillings MR (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3:256–264

    CAS  PubMed  Google Scholar 

  • Hovanec TA, Taylor LT, Blakis A, DeLong EF (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol 64:258–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeans C, Singer SW, Chan CS, VerBerkmoes NC, Shah M, Hettich RL, Banfield JF, Thelen MP (2008) Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J 2:542–550

    CAS  PubMed  Google Scholar 

  • Jogler C, Niebler M, Lin W, Kube M, Wanner G, Kolinko S, Stief P, Beck AJ, de Beer D, Petersen N, Pan Y, Amann R, Reinhardt R, Schuller D (2010) Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environ Microbiol 12:2466–2478

    CAS  PubMed  Google Scholar 

  • Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods 23:205–218

    Google Scholar 

  • Johnson DB (2001) Genus II. Leptospirillum Hippe 2000, 503 (ex Markosyan 1972, 26). In: Garrity GM, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 453–457

    Google Scholar 

  • Johnson DB, McGinness S (1991) A highly efficient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria. J Microbiol Methods 13:113–122

    Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer K-H, Pommerening-Röser A, Koops H-P, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keuter S, Kruse M, Lipski A, Spieck E (2011) Relevance of Nitrospira for nitrite oxidation in a marine recirculation aquaculture system and physiological features of a Nitrospira marina-like isolate. Environ Microbiol 13:2536–2547

    CAS  PubMed  Google Scholar 

  • Kim DJ, Kim SH (2006) Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics. Water Res 40:887–894

    CAS  PubMed  Google Scholar 

  • Kimura H, Sugihara M, Yamamoto H, Patel BKC, Kato K, Hanada S (2005) Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9:407–414

    CAS  PubMed  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2008) Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans. Biotechnol Bioeng 100:49–60

    CAS  PubMed  Google Scholar 

  • Knapp CW, Graham DW (2007) Nitrite-oxidizing bacteria guild ecology associated with nitrification failure in a continuous-flow reactor. FEMS Microbiol Ecol 62:195–201

    CAS  PubMed  Google Scholar 

  • Kostan J, Sjöblom B, Maixner F, Mlynek G, Furtmüller PG, Obinger C, Wagner M, Daims H, Djinović-Carugo K (2010) Structural and functional characterisation of the chlorite dismutase from the nitrite-oxidizing bacterium “Candidatus Nitrospira defluvii”: identification of a catalytically important amino acid residue. J Struct Biol 172:331–342

    CAS  PubMed  Google Scholar 

  • Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing Eubacteria. J Bacteriol 174:269–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebedeva EV, Alawi M, Fiencke C, Namsaraev B, Bock E, Spieck E (2005) Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol 54:297–306

    CAS  PubMed  Google Scholar 

  • Lebedeva EV, Alawi M, Maixner F, Jozsa PG, Daims H, Spieck E (2008) Physiological and phylogenetical characterization of a new lithoautotrophic nitrite-oxidizing bacterium ‘Candidatus Nitrospira bockiana’ sp. nov. Int J Syst Evol Microbiol 58:242–250

    CAS  PubMed  Google Scholar 

  • Lebedeva EV, Off S, Zumbragel S, Kruse M, Shagzhina A, Lucker S, Maixner F, Lipski A, Daims H, Spieck E (2011) Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol Ecol 75:195–204

    CAS  PubMed  Google Scholar 

  • Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA (2011) Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol 13:538–549

    PubMed  Google Scholar 

  • Levican G, Ugalde JA, Ehrenfeld N, Maass A, Parada P (2008) Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9:581

    PubMed Central  PubMed  Google Scholar 

  • Lin W, Jogler C, Schuler D, Pan YX (2011) Metagenomic analysis reveals unexpected subgenomic diversity of magnetotactic bacteria within the phylum Nitrospirae. Appl Environ Microbiol 77:323–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipski A, Spieck E, Makolla A, Altendorf K (2001) Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity. Syst Appl Microbiol 24:377–384

    CAS  PubMed  Google Scholar 

  • Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JS, Spieck E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci U S A 107:13479–13484

    PubMed Central  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhu K, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lydmark P, Lind M, Sorensson F, Hermansson M (2006) Vertical distribution of nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter. Environ Microbiol 8:2036–2049

    CAS  PubMed  Google Scholar 

  • Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, Daims H (2006) Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol 8:1487–1495

    CAS  PubMed  Google Scholar 

  • Maixner F, Wagner M, Lücker S, Pelletier E, Schmitz-Esser S, Hace K, Spieck E, Konrat R, Le Paslier D, Daims H (2008) Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’. Environ Microbiol 10:3043–3056

    CAS  PubMed  Google Scholar 

  • Markosyan GE (1972) A new iron-oxidizing bacterium—Leptospirillum ferrooxidans nov. gen. nov. sp. Biol J Armenia 25:26–29

    Google Scholar 

  • Mi S, Song J, Lin JQ, Che YY, Zheng HJ (2011) Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. J Microbiol 49:890–901

    CAS  PubMed  Google Scholar 

  • Mlynek G, Sjoblom B, Kostan J, Füreder S, Maixner F, Gysel K, Furtmüller PG, Obinger C, Wagner M, Daims H, Djinovic-Carugo K (2011) Unexpected diversity of chlorite dismutases: a catalytically efficient dimeric enzyme from Nitrobacter winogradskyi. J Bacteriol 193:2408–2417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nogueira R, Melo LF (2006) Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnol Bioeng 95:169–175

    CAS  PubMed  Google Scholar 

  • Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, Crossey LJ, Connolly CA, Boston PJ, Natvig DO, Dahm CN (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 5:1071–1086

    PubMed  Google Scholar 

  • Off S, Alawi M, Spieck E (2010) Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge. Appl Environ Microbiol 76:4640–4646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okabe S, Satoh H, Watanabe Y (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 65:3182–3191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park HD, Noguera DR (2008) Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels. J Microbiol Biotechnol 18:1470–1474

    CAS  PubMed  Google Scholar 

  • Parro V, Moreno-Paz M (2003) Gene function analysis in environmental isolates: the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans. Proc Natl Acad Sci U S A 100:7883–7888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postgate JR (1963) Versatile medium for enumeration of sulfate-reducing bacteria. Appl Microbiol 11:265–267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13

    CAS  PubMed  Google Scholar 

  • Roest K, Altinbas M, Paulo PL, Heilig H, Akkermans ADL, Smidt H, de Vos WM, Stams AJM (2005) Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor. Microb Ecol 50:440–446

    CAS  PubMed  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    CAS  PubMed  Google Scholar 

  • Rojas-Chapana JA, Tributsch H (2004) Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite. FEMS Microbiol Ecol 47:19–29

    CAS  PubMed  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    CAS  PubMed  Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schramm A, de Beer D, Wagner M, Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64:3480–3485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schramm A, de Beer D, van den Heuvel JC, Ottengraf S, Amann R (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65:3690–3696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144:2655–2665

    CAS  PubMed  Google Scholar 

  • Sekiguchi Y, Muramatsu M, Imachi H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y (2008) Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. Int J Syst Evol Microbiol 58:2541–2548

    CAS  PubMed  Google Scholar 

  • Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. 1. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77:642–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons SL, Dibartolo G, Denef VJ, Goltsman DS, Thelen MP, Banfield JF (2008) Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol 6:e177

    PubMed Central  PubMed  Google Scholar 

  • Singer SW, Chan CS, Zemla A, VerBerkmoes NC, Hwang M, Hettich RL, Banfield JF, Thelen MP (2008) Characterization of cytochrome 579, an unusual cytochrome isolated from an iron-oxidizing microbial community. Appl Environ Microbiol 74:4454–4462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1989) Approved list of bacterial names, Amendedth edn. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Sonne-Hansen J, Ahring BK (1999) Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22:559–564

    CAS  PubMed  Google Scholar 

  • Sonne-Hansen J, Westermann P, Ahring BK (1999) Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3. Appl Environ Microbiol 65:1304–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spieck E, Bock E (2005) The lithoautotrophic nitrite-oxidizing bacteria. In: Staley JT, Boone DR, Brenner DJ, de Vos P, Garrity GM, Goodfellow M, Krieg NR, Rainey FA, Schleifer KH (eds) Bergey’s manual of systematic bacteriology. Springer Science+Business Media, New York, pp 149–153

    Google Scholar 

  • Spieck E, Ehrich S, Aamand J, Bock E (1998) Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis. Arch Microbiol 169:225–230

    CAS  PubMed  Google Scholar 

  • Spieck E, Hartwig C, McCormack I, Maixner F, Wagner M, Lipski A, Daims H (2006) Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol 8:405–415

    CAS  PubMed  Google Scholar 

  • Spring S, Amann R, Ludwig W, Schleifer KH, van Gemerden H, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 59:2397–2403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    PubMed  Google Scholar 

  • Sundkvist JE, Gahan CS, Sandstrom A (2008) Modeling of ferrous iron oxidation by a Leptospirillum ferrooxidans-dominated chemostat culture. Biotechnol Bioeng 99:378–389

    CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    CAS  PubMed  Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urbieta MS, Gonzalez Toril E, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquen, Argentina. Microb Ecol 64:91–104

    PubMed  Google Scholar 

  • Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner M, Rath G, Koops H-P, Flood J, Amann R (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Technol 34:237–244

    CAS  Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144:1–7

    Google Scholar 

  • Yamamoto M, Arai H, Ishii M, Igarashi Y (2006) Role of two 2-oxoglutarate: ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions. FEMS Microbiol Lett 263:189–193

    CAS  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    CAS  PubMed  Google Scholar 

  • Yokota A, Yamada Y, Imai K (1988) Lipopolysaccharides of iron-oxidizing Leptospirillum ferrooxidans and Thiobacillus ferrooxidans. J Gen Appl Microbiol 34:27–37

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Michael Pester for providing the phylogenetic consensus tree of the genus Nitrospira as basis of Fig. 59.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Daims .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Daims, H. (2014). The Family Nitrospiraceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_126

Download citation

Publish with us

Policies and ethics