Skip to main content

WorldView-2 Satellite Imagery and Airborne LiDAR Data for Object-Based Forest Species Classification in a Cool Temperate Rainforest Environment

  • Chapter
  • First Online:
Developments in Multidimensional Spatial Data Models

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

High resolution spatial data including airborne LiDAR data and newly available WorldView-2 satellite imagery provide opportunities to develop new efficient ways of solving conventional problems in forestry. Those responsible for monitoring forest changes over time relevant to timber harvesting and native forest conservation realize the potential for improved documentation from using such data. Proper use of high spatial resolution data with object-based image analysis approach and nonparametric classification method such as decision trees offers an alternative to aerial photograph interpretation in support of forest classification and mapping. This study explored ways of processing airborne LiDAR data and WorldView-2 satellite imagery for object-based forest species classification using decision trees in the Strzelecki Ranges, one of the four major Victorian areas of cool temperate rainforest in Australia. The effectiveness of variables derived from different data sets, in particular, the four new bands of WorldView-2 imagery was examined. The results showed that using LiDAR data alone or four conventional bands only, the overall accuracies achieved were 61.39 and 61.42 % respectively, but the overall accuracy increased to 82.35 % when all eight bands and the LiDAR data were used. This study demonstrated that the integration of airborne LiDAR and eight WorldView-2 bands significantly improved the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam P (1992) Australian rainforests. Oxford University Press, Oxford

    Google Scholar 

  • Antonarakis AS, Richards KS, Brasington J (2008) Object-based land cover classification using airborne LiDAR. Remote Sens Environ 112:2988–2998

    Article  Google Scholar 

  • Arroyo LA, Johansen K, Armston J, Phinn S (2010) Integration of LiDAR and QuickBird imagery for mapping riparian biophysical parameters and land cover types in Australian tropical savannas. For Ecol Manage 259:598–606

    Article  Google Scholar 

  • Baatz M, Schäpe A (2000) Multi-resolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T (eds) Angewandte geographische informationsverarbeitung. Wichmann-Verlag, Heidelberg, pp 12–23

    Google Scholar 

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogram Remote Sens 58:239–258

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogram Remote Sens 65:2–16

    Article  Google Scholar 

  • Borak JS, Strahler AH (1999) Feature selection and land cover classification of a MODIS-like data set for a semiarid environment. Int J Remote Sens 20(5):919–938

    Article  Google Scholar 

  • Boyle C, Lowe KW (2004) Biodiversity action planning strategic overview for the Strzelecki Ranges bioregion. Victorian Department of Sustainability and Environment, Melbourne

    Google Scholar 

  • Brandtberg T, Warner TA, Landenberger RE, McGraw JB (2003) Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens Environ 85:290–303

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olsen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Brown de Colstoun ECB, Story MH, Thompson C, Commisso K, Smith TG, Irons JR (2003) National park vegetation mapping using multi-temporal landsat 7 data and a decision tree classifier. Remote Sens Environ 85:316–327

    Article  Google Scholar 

  • Castilla G, Hay GJ (2008) Image objects and geographic objects. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis. Springer, Berlin, pp 91–110

    Chapter  Google Scholar 

  • Chubey MS, Franklin SE, Wulder MA (2006) Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogram Eng Remote Sens 72(4):383–394

    Google Scholar 

  • Clinton N, Holt A, Scarborough J, Yan L, Gong P (2010) Accuracy assessment measures of object-based image segmentation goodness. Photogram Eng Remote Sens 76(3):289–299

    Google Scholar 

  • Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Danson FM, Morsdorf F, Koetz B (2009) Airborne and terrestrial laser scanning for measuring vegetation canopy structure. In: Heritage GL, Large ARG (eds) Laser scanning for the environmental sciences. Wiley-Blackwell, West Sussex, pp 201–219

    Chapter  Google Scholar 

  • Davies JB, Oates AM, Trumbull-Ward AV (2002) Ecological vegetation class mapping at 1:25000 in Gippsland. Victorian Department of Natural Resources and Environment, Melbourne

    Google Scholar 

  • DigitalGlobe (2009) White Paper—the benefits of the 8 spectral bands of WorldView-2. DigitalGlobe, Inc, Longmont, CO

    Google Scholar 

  • DSE (2011) EVC benchmarks—Strzelecki Ranges bioregion. Victorian Department of Sustainability and Environment, Melbourne

    Google Scholar 

  • Duro DC, Franklin SE, Dubé MG (2012) A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens Environ 118:259–272

    Article  Google Scholar 

  • Erdody TL, Moskal LM (2010) Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens Environ 114:725–737

    Article  Google Scholar 

  • Evans DL, Roberts SD, Parker RC (2006) LiDAR—A new tool for forest measurements? Forest Chronicle 82(2):211–218

    Google Scholar 

  • Franklin SE (2001) Remote sensing for sustainable forest management. CRC Press LLC, Boca Raton, London, New York and Washington, DC

    Book  Google Scholar 

  • Friedl MA, Brodley CE (1997) Decision tree classification of land cover from remotely sensed data. Remote Sens Environ 61:399–409

    Article  Google Scholar 

  • Groebner DF, Shannon PW, Fry PC, Smith KD (2011) Business statistics: a decision-making approach, 8th edn. Pearson Education, Inc., Boston

    Google Scholar 

  • Hansen M, Dubayah R, Defries R (1996) Classification trees: an alternative to traditional land cover classifiers. Int J Remote Sens 17(5):1075–1081

    Article  Google Scholar 

  • Haralick RM (1986) Statistical image texture analysis. In: Young TY, Fu K-S (eds) Handbook of pattern recognition and image processing. Academic, Inc., San Diego, pp 247–279

    Google Scholar 

  • Hay GJ, Castilla G, Wulder MA, Ruiz JR (2005) An automated object-based approach for the multiscale image segmentation of forest scenes. Int J Appl Earth Obs Geoinf 7:339–359

    Article  Google Scholar 

  • Hay GJ, Marceau DJ, Bouchard A, Dubá P (2001) A multiscale framework for landscape analysis: object-specific upscaling. Landscape Ecol 16:471–490

    Article  Google Scholar 

  • Hay GJ, Niemann KO, McLean GF (1995) An object-specific image-texture analysis of H-resolution forest imagery. Remote Sens Environ 55:108–122

    Article  Google Scholar 

  • Holmgren J, Persson Å, Söderman U (2008) Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int J Remote Sens 29(5):1537–1552

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Kagan JS, Ohmann JA, Gregory MJ, Tobalske C, Hak JC, Fried J (2006) Final report on land cover mapping methods: map zones 8 and 9, Pacific Northwest ReGAP. Institute for Natural Resources, Oregon State University, Corvallis, OR

    Google Scholar 

  • Ke Y, Quackenbush LJ, Im J (2010) Synergistic use of QuickBird multispectral imagery and Lidar data for object-based forest species classification. Remote Sens Environ 114:1141–1151

    Article  Google Scholar 

  • Kim M, Madden M, Warner T (2008) Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis. Springer, Berlin, pp 291–307

    Chapter  Google Scholar 

  • Kim M, Madden M, Warner TA (2009) Forest type mapping using object-specific texture measures from multispectral Ikonos imagery: segmentation quality and image classification issues. Photogram Eng Remote Sens 75(7):819–829

    Google Scholar 

  • Lawrence R, Bunn A, Powell S, Zambon M (2004) Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens Environ 90:331–336

    Article  Google Scholar 

  • Lawrence RL, Wright A (2001) Rule-based classification systems using classification and regression tree (CART) analysis. Photogram Eng Remote Sens 67(10):1137–1142

    Google Scholar 

  • Legg S (1986) Farm abandonment in South Gippsland’s Strzelecki Ranges, 1870–1925: challenge or tragedy. Gippsland Heritage J 1(1):14–22

    Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2008) Remote sensing and image interpretation, 6th edn. Wiley, New York

    Google Scholar 

  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27(1):88–106

    Article  Google Scholar 

  • Lovell LL, Jupp DLB, Culvenor DS, Coops NC (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Remote Sens 29(5):607–622

    Article  Google Scholar 

  • Mallinis G, Koutsias N, Tsakiri-Strati M, Karteris M (2008) Object-based classification using QuickBird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J Photogram Remote Sens 63:237–250

    Article  Google Scholar 

  • Michaelsen J, Schimel DS, Friedl MA, Davis FW, Dubayah RC (1994) Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. J Veg Sci 5:673–686

    Article  Google Scholar 

  • Möller M, Lymburner L, Volk M (2007) The comparison index: a tool for assessing the accuracy of image segmentation. Int J Appl Earth Obs Geoinf 9:311–321

    Article  Google Scholar 

  • Morsdorf F, Mårell A, Koetz B, Cassagne N, Pimont F, Rigolot E, Allgöwer B (2010) Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114:1403–1415

    Article  Google Scholar 

  • Navulur K (2007) Multispectral image analysis using the object-oriented paradigm. CRC Press, Boca Raton

    Google Scholar 

  • Noble WS (1978) The Strzeleckis: a new future for the heartbreak hills. Victoria Forests Commission, Melbourne

    Google Scholar 

  • Novichikhin A (2011) Developent of object-oriented image classification technique with a tree heights and species interpretation using 8-band VHR satellite imagery. Faculty of Geography, Lomonosov Moscow State University, Moscow

    Google Scholar 

  • Ørka HO, Næsset E, Bollandsås OM (2009) Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens Environ 113:1163–1174

    Article  Google Scholar 

  • Ozdemir I, Karnieli A (2011) Precicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. Int J Appl Earth Obs Geoinf 13:701–710

    Article  Google Scholar 

  • Pal M, Mather PM (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ 86:554–565

    Article  Google Scholar 

  • Peel B (1999) Rainforests and Cool Temperate Mixed Forests of Victoria. Department of Natural Resources and Environment, East Melbourne

    Google Scholar 

  • Pekkarinen A (2002) Image segment-based spectral features in the estimation of timber volume. Remote Sens Environ 82:349–359

    Article  Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2002) Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Comput Electron Agric 37:71–95

    Article  Google Scholar 

  • Potapov P, Hansen MC, Stehman SV, Loveland TR, Pittman K (2008) Combining MODIS and landsat imagery to estimate and map boreal forest cover loss. Remote Sens Environ 112:3708–3719

    Article  Google Scholar 

  • Radoux J, Bogaert P, Fasbender D, Defourny P (2011) Thematic accuracy assessment of geographic object-based image classification. Int J Geog Inform Sci 25(6):895–911

    Article  Google Scholar 

  • Radoux J, Defourny P (2008) Quality assessment of segmentation results devoted to object-based classification. In: Blaschke T, Lang S, Hay GJ (eds) Object-based image analysis. Springer, Berlin, pp 257–271

    Chapter  Google Scholar 

  • Riaño D, Meier E, Allgöwer B, Chuvieco E, Ustin SL (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sens Environ 86:177–186

    Article  Google Scholar 

  • Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K (2010) Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data. Landscape Ecol Eng. doi:10.1007/s11355-011-0158-z

    Google Scholar 

  • Scanlan I, McElhinny C, Turner P (2010) A methodology for modelling canopy structure: an exploratory analysis in the tall wet eucalypt forests of southern Tasmania. Forests 1:4–24

    Article  Google Scholar 

  • Seltman HJ (2010) Experimental design and analysis. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  • St-Onge BA, Cavayas F (1997) Automated forest structure mapping from high resolution imagery based on directional semivariogram estimates. Remote Sens Environ 61:82–95

    Article  Google Scholar 

  • Steinberg D, Golovnya M (2006) CART 6.0 user’s manual. Salford Systems, San Diego, CA

    Google Scholar 

  • Trimble eCognition (2011) eCognition developer 8.7 user guide. Trimble Germany GmbH, Munich

    Google Scholar 

  • Tso B, Mather PM (2009) Classification methods for remotely sensed data, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Walford N (2011) Practical statistics for geographers and earth scientists. Wiley-Blackwell, Oxford

    Google Scholar 

  • Wang L (2004) Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int J Remote Sens 25(24):5655–5668

    Article  Google Scholar 

  • WGCMA (2009) Strzelecki Ranges bioregion Grand Ridge biodiversity landscape plan. West Gippsland Catchment Management Authority, Traralgon

    Google Scholar 

  • Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D (2006) Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogram Eng Remote Sens 72(7):799–811

    Google Scholar 

  • Zhang Z, Liu X (2012) Support vector machines for tree species identification using LiDAR-derived structure and intensity variables. Geocarto Int. doi:10.1080/10106049.2012.710653

    Google Scholar 

  • Zhang Z, Liu X, Peterson J, Wright W (2011) Cool temperate rainforest and adjacent forests classification using airborne LiDAR data. Area 43(4):438–448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Z., Liu, X. (2013). WorldView-2 Satellite Imagery and Airborne LiDAR Data for Object-Based Forest Species Classification in a Cool Temperate Rainforest Environment. In: Abdul Rahman, A., Boguslawski, P., Gold, C., Said, M. (eds) Developments in Multidimensional Spatial Data Models. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36379-5_7

Download citation

Publish with us

Policies and ethics