Skip to main content

Stimuli-Responsive Polymers

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 739 Accesses

Synonyms

Intelligent soft materials; Smart soft materials

Definition

Stimuli-responsive polymers are polymers which dramatically change their properties, e.g., solubility or viscoelasticity, in response to external stimuli, including temperature, pH, and chemicals.

Background

In these decades, smart or intelligent materials have drawn considerable interest from researchers in materials science. In these materials, polymers, which change their properties responsive to external stimuli, play a vital role [1, 2]. This entry describes briefly stimuli and responses for stimuli-responsive polymers and overviews some typical examples of stimuli-responsive polymers.

Stimuli and Responses

Stimuli

Stimuli for stimuli-responsive polymer include temperature, pressure, pH, chemicals, light, and redox [3].

Temperature is the most common stimulus for stimuli-responsive polymers. Because all physical and chemical events proceed to thermally stable states, all materials are active against heat, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. McCormick CL (ed) (2001) Stimuli-responsive water soluble and amphiphilic polymers. ACS symposium series, vol 780. American Chemical Society, Washington, DC

    Google Scholar 

  2. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(1–2):278–301. doi:10.1016/j.progpolymsci.2009.10.008

    Article  CAS  Google Scholar 

  3. Hashidzume A, Harada A (2012) Stimuli-responsive systems. In: Harada A (ed) Supramolecular polymer chemistry. Wiley-VCH, Weinheim, pp 231–267. doi:10.1002/9783527639786.ch11

    Chapter  Google Scholar 

  4. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249

    Article  CAS  Google Scholar 

  5. Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37(5):686–714. doi:10.1016/j.progpolymsci.2011.10.002

    Article  CAS  Google Scholar 

  6. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. Adv Polym Sci 201(1):157–224. doi:10.1007/12_078

    Article  CAS  Google Scholar 

  7. Aoshima S, Kanaoka S (2009) A renaissance in living cationic polymerization. Chem Rev (Washington, DC) 109(11):5245–5287. doi:10.1021/cr900225g

    Article  CAS  Google Scholar 

  8. Kirby CF, McHugh MA (1999) Phase behavior of polymers in supercritical fluid solvents. Chem Rev (Washington, DC) 99(2):565–602. doi:10.1021/cr970046j

    Article  CAS  Google Scholar 

  9. George DW (1999) Neutron scattering studies of polymers in supercritical carbon dioxide. J Phys Condens Matter 11(15):R157–R177. doi:10.1088/0953-8984/11/15/006

    Article  Google Scholar 

  10. Hashidzume A, Morishima Y, Szczubialka K (2002) Amphiphilic polyelectrolytes. In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of polyelectrolytes and their applications, vol 2. American Scientific Publishers, Stevenson Ranch, pp 1–63

    Google Scholar 

  11. Jenkins RD, DeLong LM, Bassett DR (1996) Influence of alkali-soluble associative emulsion polymer architecture on rheology. In: Glass JE (ed) Hydrophilic polymers. Performance with environmental acceptance. Advances in chemistry series, vol 248. American Chemical Society, Washington, DC, pp 425–447

    Chapter  Google Scholar 

  12. Kwak JCT (ed) (1998) Polymer-surfactant systems. Surfactant science series, vol 77. Marcel Dekker, New York

    Google Scholar 

  13. Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev (Washington, DC) 109(11):5974–6023

    Article  CAS  Google Scholar 

  14. Hashidzume A, Harada A (2011) Recognition of polymer side chains by cyclodextrins. Polym Chem 2(10):2146–2154

    Article  CAS  Google Scholar 

  15. Barrett CJ, Mamiya J-i, Yager KG, Ikeda T (2007) Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3(10):1249–1261. doi:10.1039/b705619b

    Article  CAS  Google Scholar 

  16. Yoshida R (2011) Self-oscillating polymer gels. In: Nakanishi T (ed) Supramolecular soft matter: applications in materials and organic electronics. Wiley, Hoboken, pp 237–253. doi:10.1002/9781118095331.ch12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Harada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hashidzume, A., Harada, A. (2013). Stimuli-Responsive Polymers. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics