Skip to main content

pH-Responsive Polymer

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

pH-sensitive polymer; Polyelectrolytes

Definition

pH-responsive polymers are smart polymers that undergo changes in structures and properties such as conformation, hydrophilicity/hydrophobicity, solubility, volume, and so on in response to a change in pH. Polymers with acidic or basic groups like carboxy, sulfonyl, and amino groups are typically described as pH-responsive polymers because the ionization of the groups by pH changes results in changes in structures and properties of the polymer chains.

Key Principles, Examples, and Synthesis of pH-responsive Polymers

pH-responsive polymers undergo changes in structures and properties such as conformation, hydrophilicity/hydrophobicity, solubility, and volume in response to external pH. For example, poly(methacrylic acid) (PMAAc) shows reversible phase transition between soluble and insoluble state in response to pH changes. A change in pH induces the conformational changes in poly(L-lysine) between α-helix and random coil....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Xia J, Dubin PL (1994) Protein-polyelectrolyte complexes. In: Dubin PL, Bock J, Davies RM, Schulz DN, Thies C (eds) Macromolecular complexes in chemistry and biology. Springer, Heidelberg

    Google Scholar 

  2. Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley, Hoboken

    Book  Google Scholar 

  3. Matyjaszewski K, Braunecker WA (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146. doi:10.1016/j.progpolymsci.2006.11.002

    Article  Google Scholar 

  4. Sawai T, Yamazaki S, Ikariyama Y, Aizawa M (1991) pH-responsive swelling of the ultrafine microsphere. Macromolecules 24:2117–2118. doi:10.1021/ma00008a067

    Article  CAS  Google Scholar 

  5. Beng HT, Kam CT (2008) Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. Adv Colloid Interface Sci 136:25–44. doi:10.1016/j.cic.2007.07.002

    Article  Google Scholar 

  6. Oishi M, Nagasaki Y (2007) Synthesis, characterization, and biomedical applications of core-shell-type stimuli-responsive nanogels – nanogel composed of poly[2-(N,N-diethylamino)ethyl methacrylate] core and PEG tethered chains. React Funct Polym 67:1311–1329. doi:10.1016/j.reactfunctpolym.2007.07.009

    Article  CAS  Google Scholar 

  7. Foss AC, Goto T, Morishita M, Peppas NA (2004) Development of acrylic-based copolymers for oral insulin delivery. Eur J Pharm Biopharm 57:163–169. doi:10.1016/S0939-6411(03)00145-0

    Article  CAS  Google Scholar 

  8. Tsuchida A, Abe K (1982) Formation, structure and properties of intermacromolecular complexes. In: Interactions between macromolecules in solution and intermacromolecular complexes, vol 45, Advances in polymer science. Springer, Heidelberg, pp 1–119

    Chapter  Google Scholar 

  9. Rodriguez-Hernandez J, Checot F, Gnanou Y, Lecommandoux S (2005) Toward ‘Smart’ nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci 30:691–724. doi:10.1016/j.progpolymsci.2005.04.002

    Article  CAS  Google Scholar 

  10. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985. doi:10.1039/c2cs35115c

    Article  CAS  Google Scholar 

  11. Moffitt M, Khogaz K, Eisenberg A (1996) Micellization of ionic block copolymers. Acc Chem Res 29:95–102. doi:10.1021/ar940080

    Article  CAS  Google Scholar 

  12. Lin S, Billingham NC, Arms SP (2001) A schizophrenic water-soluble diblock copolymer. Angew Chem Int Ed 40:2328–2331. doi:10.1002/1521-3773(20010618)40:12<2328::AID-ANIE2328>3.0.CO;2-M

    Article  Google Scholar 

  13. Rodriguez-Hernandez J, Lecommandoux S (2005) Reversible inside-out micellization of ph-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J Am Chem Soc 127:2026–2027. doi:10.1021/ja043920g

    Article  CAS  Google Scholar 

  14. Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok H (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527. doi:10.1021/cr900045a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Miyata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kawamura, A., Miyata, T. (2014). pH-Responsive Polymer. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_211-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_211-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics