Skip to main content

Salt Bridges and Diaphragms

  • Chapter
  • First Online:
Handbook of Reference Electrodes

Abstract

Whenever the reference electrode compartment has to be separated by electrolyte bridges and diaphragms from the other parts of the electrochemical cell, the separation has to meet the following requirements:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This kind of capillary salt bridge was suggested by Hans Luggin, an Austrian scientist (1863–1899), to Fritz Haber (1868–1934) when both worked in Karlsruhe, Germany.

References

References to Sect. 4.1

  1. Bates RG, Pinching GD, Smith ER (1950) J Res Natl Bur Stand 45:418–429

    Article  CAS  Google Scholar 

  2. Material safety data sheet (21 April 2009) 6.2308.040 Idrolyte. Metrohm Ltd., CH-9101 Herisau, Switzerland

    Google Scholar 

  3. Smith TJ, Stevenson KJ (2007) Reference electrodes. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Amsterdam, p 96

    Google Scholar 

  4. Data sheet: Vycor® Brand Porous Glass 7930, Corning Incorporated, 2001

    Google Scholar 

  5. Gille W, Enke D, Janowski F (2002) J Porous Mater 9:221–230

    Article  CAS  Google Scholar 

  6. Technical speciation of pH glass electrode 6.0224.100 of Metrohm AG, Switzerland

    Google Scholar 

  7. Technical speciation of pH glass electrode 6.0221.100 of Metrohm AG, Switzerland

    Google Scholar 

  8. Technical speciations of various glass electrodes 6.01 – 6.02 of Metrohm AG, Switzerland

    Google Scholar 

  9. Steel BJ, Stokes JM, Stokes RH (1958) J Phys Chem 62:1514–1516

    Article  CAS  Google Scholar 

  10. Fuji T, Thomas HC (1958) J Phys Chem 62:1566–1568

    Article  Google Scholar 

  11. Gokarn NA, Rajurkar NS (2006) J Solut Chem 35:1673–1685

    Article  CAS  Google Scholar 

  12. Darwish MIM, van der Maarel JRC, Zitha PLJ (2004) Macromolecules 37:2307–2312

    Article  CAS  Google Scholar 

  13. Hasse U, Scholz F (2005) Electrochem Commun 7:173–176

    Article  CAS  Google Scholar 

  14. Vahl K, Kahlert H, Scholz F (2010) Electroanalysis 22:2172–2178

    Article  CAS  Google Scholar 

  15. Narayanan J, Xiong J-Y, Liu X-Y (2006) J Phys Conf Ser 28:83–86

    Article  CAS  Google Scholar 

  16. Hasse U, Scholz F (2006) J Solid State Electrochem 10:380–382

    Article  CAS  Google Scholar 

  17. Material safety data sheet (April 2011, Version 3) Reference Gel Electrolyte RE45. Ionode Pty Ltd, 8/148 Tennyson Memorial Avenue, Tennyson Qld 4105, Australia

    Google Scholar 

  18. Material safety data sheet (21 April 2009) 6.2308.030 Electrolyte KCl sat. gel. Metrohm Ltd., CH-9101 Herisau, Switzerland

    Google Scholar 

  19. Kindler DD, Bergethon PR (1990) J Appl Physiol 69:371–375

    Google Scholar 

  20. Kahlert H (2010) In: Scholz F (ed) Electroanalytical methods. Guide to experiments and applications, 2nd edn. Springer, Berlin, p 305

    Google Scholar 

  21. Kahlert H (2010) In: Scholz F (ed) Electroanalytical methods. Guide to experiments and applications, 2nd edn. Springer, Berlin, p 304

    Google Scholar 

References to Sect. 4.2

  1. Kakiuchi T, Tsujioka N, Kurita S, Iwami Y (2003) Electrochem Commun 5(2):159–164

    Article  CAS  Google Scholar 

  2. Kakiuchi T, Yoshimatsu T (2006) Bull Chem Soc Jpn 79(7):1017–1024

    Article  CAS  Google Scholar 

  3. Shibata M, Sakaida H, Kakiuchi T (2011) Anal Chem 83(1):164–168

    Article  CAS  Google Scholar 

  4. Kakiuchi T (2011) J Solid State Electrochem 15(7–8):1661–1671

    Article  CAS  Google Scholar 

  5. Sakaida H, Kakiuchi T (2011) J Phys Chem B 115(45):13222–13226

    Article  CAS  Google Scholar 

  6. Nernst W (1889) Z Phys Chem 8:129–181

    Google Scholar 

  7. Kakiuchi T (2001) J Electroanal Chem 496(1–2):137–142

    CAS  Google Scholar 

  8. Kolthoff IM, Miller CS (1940) J Am Chem Soc 62:2171–2174

    Article  CAS  Google Scholar 

  9. Kakiuchi T, Senda M (1984) Bull Chem Soc Jpn 57(7):1801–1808

    Article  CAS  Google Scholar 

  10. Kakiuchi T, Tsujioka N (2007) J Electroanal Chem 599(2):209–212

    Article  CAS  Google Scholar 

  11. Yoshimatsu T, Kakiuchi T (2007) Anal Sci 23(9):1049–1052

    Article  CAS  Google Scholar 

  12. Henderson P (1907) Z Phys Chem 59(1):118–127

    CAS  Google Scholar 

  13. Dickinson EJF, Freitag L, Compton RG (2010) J Phys Chem B 114(1):187–197

    Article  CAS  Google Scholar 

  14. Sakaida H, Kitazumi Y, Kakiuchi T (2010) Talanta 83(2):663–666

    Article  CAS  Google Scholar 

  15. Fujino Y, Kakiuchi T (2011) J Electroanal Chem 651(1):61–66

    Article  CAS  Google Scholar 

  16. Fujino Y, Kakiuchi T (2010) Unpublished work

    Google Scholar 

  17. Fraenkel D (2011) J Phys Chem B 115:557–568

    Article  CAS  Google Scholar 

  18. Sakaida Y, Kakiuchi T, to be published

    Google Scholar 

  19. Kakiuchi T, Obi I, Senda M (1985) Bull Chem Soc Jpn 58(6):1636–1641

    Article  CAS  Google Scholar 

  20. Abraham MH, Acree WE (2006) Green Chem 8(10):906–915

    Article  CAS  Google Scholar 

  21. Kakiuchi T (2007) Anal Chem 79(17):6442–6449

    Article  CAS  Google Scholar 

  22. Tanaka S, Matsuoka Y, Belkada F, Kitazumi Y, Suzuki A, Nishi N, Kakiuchi T, in preparation

    Google Scholar 

  23. Freire MG, Carvalho PJ, Gardas RL, Marrucho IM, Santos LMNBF, Coutinho JAP (2008) J Phys Chem B 112(6):1604–1610

    Article  CAS  Google Scholar 

  24. Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2011) Ind Eng Chem Res 50(9):5279–5294

    Article  CAS  Google Scholar 

  25. Rehak K, Moravek P, Strejc M (2012) Fluid Phase Equil 316:17–25

    Article  CAS  Google Scholar 

  26. Zhang LM, Miyazawa T, Kitazumi Y, Kakiuchi T (2012) Anal Chem 84(7):3461–3464

    Article  CAS  Google Scholar 

  27. Dupont J, Spencer J (2004) Angew Chem Int Ed 43(40):5296–5297

    Article  CAS  Google Scholar 

  28. Chowdhury S, Mohan RS, Scott JL (2007) Tetrahedron 63(11):2363–2389

    Article  CAS  Google Scholar 

  29. Frade RFM, Afonso CAM (2010) Hum Exp Toxicol 29(12):1038–1054

    Article  CAS  Google Scholar 

  30. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Chem Soc Rev 40(3):1383–1403

    Article  CAS  Google Scholar 

  31. Opallo M, Lesniewski A (2011) J Electroanal Chem 656(1–2):2–16

    CAS  Google Scholar 

  32. Silvester DS (2011) Analyst 136(23):4871–4882

    Article  CAS  Google Scholar 

  33. Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M, Ignat’ev N, Sartori P (2001) J Power Sources 97–98:557–560

    Article  Google Scholar 

  34. Freire MG, Neves CMSS, Marrucho IM, Coutinho JAP, Fernandes AM (2010) J Phys Chem A 114(11):3744–3749

    Article  CAS  Google Scholar 

  35. Nishi N, Suzuki A, Kakiuchi T (2009) Bull Chem Soc Jpn 82(1):86–92

    Article  CAS  Google Scholar 

  36. Yoshimatsu T (2007) Thesis of the master’s degree, Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University

    Google Scholar 

  37. Macomber CS, Boncella JM, Pivovar BS, Rau JA (2008) J Therm Anal Calorim 93(1):225–229

    Article  CAS  Google Scholar 

  38. Edson JB, Macomber CS, Pivovar BS, Boncella JM (2012) J Membr Sci 399:49–59

    Article  Google Scholar 

  39. Ye YS, Elabd YA (2011) Macromolecules 44(21):8494–8503

    Article  CAS  Google Scholar 

  40. Sakaida H (2010) Master’s Thesis of Graduate School of Engineering, Department of Energy and Hydrocarbon Chemistry, Kyoto University

    Google Scholar 

  41. Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2007) Anal Chem 79(2):758–764

    Article  CAS  Google Scholar 

  42. Stark A, Behrend P, Braun O, Muller A, Ranke J, Ondruschka B, Jastorff B (2008) Green Chem 10(11):1152–1161

    Article  CAS  Google Scholar 

  43. Fuller J, Breda AC, Carlin RT (1997) J Electrochem Soc 144(4):L67–L70

    Article  CAS  Google Scholar 

  44. Fuller J, Breda AC, Carlin RT (1998) J Electroanal Chem 459(1):29–34

    Article  CAS  Google Scholar 

  45. Shibata M, Yamanuki M, Iwamoto Y, Nomura S, Kakiuchi T (2010) Anal Sci 26(11):1203–1206

    Article  CAS  Google Scholar 

  46. Shibata M, Kato M, Iwamoto Y, Nomura S, Kakiuchi T, in preparation

    Google Scholar 

  47. Kakiuchi T, Yoshimatsu T, Nishi N (2007) Anal Chem 79(18):7187–7191

    Article  CAS  Google Scholar 

  48. Kitazumi Y, Kakiuchi T (2012) Unpublished

    Google Scholar 

  49. Covington AK, Rebelo MJF (1987) Anal Chim Acta 200(1):245–260

    Article  CAS  Google Scholar 

  50. Davison W, Covington AK, Whalley PD (1989) Anal Chim Acta 223(2):441–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fritz Scholz , Takashi Kakiuchi , Fritz Scholz or Takashi Kakiuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scholz, F., Kakiuchi, T. (2013). Salt Bridges and Diaphragms. In: Inzelt, G., Lewenstam, A., Scholz, F. (eds) Handbook of Reference Electrodes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36188-3_4

Download citation

Publish with us

Policies and ethics