Skip to main content

Epigenetic Signalling During the Life of Seeds

  • Chapter
  • First Online:
Epigenetic Memory and Control in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 18))

Abstract

Seeds are essential for reproduction and dispersal of most plant species and constitute a major human food source. The life of a seed is characterised by two major phase transitions, from embryogenesis to seed maturation and from dry seed to germination. These different stages are characterised by specific transcriptomes and require silencing and activation of diverse sets of genes. In addition, fully mature seeds contain very small nuclei with highly compacted chromatin, which is established during seed maturation. These unique characteristics require extensive epigenetic signalling mechanisms to tightly coordinate the phase transitions and control chromatin accessibility. This chapter gives an overview of our present knowledge of the role of epigenetics in the life of seeds, focussing on the later stages of seed development, dormancy and germination in Arabidopsis thaliana.

Martijn van Zanten and Yongxiu Liu have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814

    Article  PubMed  CAS  Google Scholar 

  • Bassel GW, Lan H, Glaab E, Gibbs DJ, Gerjets T, Krasnogor N, Bonner AJ, Holdsworth MJ, Provart NJ (2011) Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc Natl Acad Sci USA 108:9709–9714

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Boutin JP, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 40:151–160

    Article  CAS  Google Scholar 

  • Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  • Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou JP, Grini PE, Colot V, Schnittger A (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7:e1002014

    Article  PubMed  CAS  Google Scholar 

  • Bove J, Lucas P, Godin B, Oge L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signalling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol 57:593–612

    Article  PubMed  CAS  Google Scholar 

  • Brocard-Gifford IM, Lynch TJ, Finkelstein RR (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 131:78–92

    Article  PubMed  CAS  Google Scholar 

  • Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–882

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113

    Article  PubMed  CAS  Google Scholar 

  • Charron J-B F, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS (2012) Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22:736–748

    Article  PubMed  CAS  Google Scholar 

  • Colville A, Alhattab R, Hu M, Labbé H, Xing T, Miki B (2011) Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Rep 30:1969–1979

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Harada JJ (1990) Transcriptional activities in dry seed nuclei indicate the timing of the transition from embryogeny to germination. Proc Natl Acad Sci USA 87:2671–2674

    Article  PubMed  CAS  Google Scholar 

  • Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. OMICS 15:763–774

    Article  PubMed  CAS  Google Scholar 

  • Exner V, Hennig L (2008) Chromatin rearrangements in development. Curr Opin Plant Biol 11: 64–69

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Cadman CS, Toorop PE, Lynn JR, Hilhorst HW (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    Article  PubMed  CAS  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signalling pathways. Proc Natl Acad Sci USA 108:20236–20241

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, De Jong H (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J 66:4–17

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, Ten Hoopen R, Tessadori F (2006) Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosome Res 14:71–82

    Article  PubMed  CAS  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    PubMed  CAS  Google Scholar 

  • Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35(10):1769–1786. doi:10.1111/j.1365-3040.2012.02542.x

    Article  PubMed  CAS  Google Scholar 

  • Grasser M, Kane CM, Merkle T, Melzer M, Emmersen J, Grasser KD (2009) Transcript elongation factor TFIIS is involved in Arabidopsis seed dormancy. J Mol Biol 386:598–611

    Article  PubMed  CAS  Google Scholar 

  • Grellet F, Delseny M, Guitton Y (1977) Histone content of germinating pea embryo chromatin decreases as DNA replicates. Nature 267:724–726

    Article  PubMed  CAS  Google Scholar 

  • Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Lüscher B, Amati B (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Wuytswinkel OV, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300

    Article  PubMed  CAS  Google Scholar 

  • Gutzat R, Borghi L, Fütterer J, Bischof S, Laizet Y, Hennig L, Feil R, Lunn J, Gruissem W (2011) RETINOBLASTOMA-RELATED PROTEIN controls the transition to autotrophic plant development. Development 138:2977–2986

    Article  PubMed  CAS  Google Scholar 

  • Han MH, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA 101:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  PubMed  CAS  Google Scholar 

  • Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC, Robey J, Sung ZR, de Vries SC, Ogas J (2004) PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134: 995–1005

    Article  PubMed  CAS  Google Scholar 

  • Henry KW, Wyce A, Lo W-S, Duggan LJ, Emre NCT, Kao C-F, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitilation and deubiquitilation, mediated by SAGA-associated Ubp8. Genes Dev 17: 2648–2663

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    Article  PubMed  CAS  Google Scholar 

  • Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11:261–266

    Article  PubMed  CAS  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  PubMed  CAS  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    Article  PubMed  CAS  Google Scholar 

  • Kater JM (1927) A cytological study of dormancy in the seed of Phaseolus vulgaris. Ann Bot 41: 629–664

    Google Scholar 

  • Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R (2005) Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17:3301–3310

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Guermah M, McGinty RK, Lee J-S, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG (2009) RAD6-mediated transcription-coupled H2B ubiquitilation directly stimulates H3K4 methylation in human cells. Cell 137:459–471

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Lan F, Nottke AC, Shi Y (2008) Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20:316–325

    Article  PubMed  CAS  Google Scholar 

  • Leymarie J, Bruneaux E, Gibot-Leclerc S, Corbineau F (2007) Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP. J Exp Bot 58:425–437

    Article  PubMed  CAS  Google Scholar 

  • Li HC, Chuang K, Henderson JT, Rider SD Jr, Bai Y, Zhang H, Fountain M, Gerber J, Ogas J (2005) PICKLE acts during germination to repress expression of embryonic traits. Plant J 44:1010–1022

    Article  PubMed  CAS  Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Koornneef M, Soppe WJJ (2007a) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodelling in seed dormancy. Plant Cell 19:433–444

    Article  PubMed  CAS  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007b) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Geyer R, van Zanten M, Carles A, Li Y, Hörold A, Van Nocker S, Soppe WJJ (2011) Identification of the Arabidopsis REDUCED DORMANCY2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy. PLoS One 6:e22241

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Feodoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2365

    PubMed  CAS  Google Scholar 

  • Luerssen K, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Wang YY, Liu X, Yang S, Lu Q, Cui Y, Wu K (2012) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 63:3297–3306

    Article  PubMed  CAS  Google Scholar 

  • Mathieu O, Jasencakova Z, Vaillant I, Gendrel AV, Colot V, Schubert I, Tourmente S (2003) Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell 15:2929–2939

    Article  PubMed  CAS  Google Scholar 

  • Middendorf FG (1939) Cytology of dormancy in Phaseolus and Zea. Bot Gaz 100:485–499

    Article  Google Scholar 

  • Mortensen SA, Sønderkær M, Lynggaard C, Grasser M, Nielsen KL, Grasser KD (2011) Reduced expression of the DOG1 gene in Arabidopsis mutant seeds lacking the transcript elongation factor TFIIS. FEBS Lett 585:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T (2005) Analysis of ABA Hypersensitive Germination 2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J 44:972–984

    Article  PubMed  CAS  Google Scholar 

  • North H, Baud S, Debeaujon I, Dubos C, Dubreucq B, Grappin P, Jullien M, Lepiniec L, Marion-Poll A, Miquel M, Rajjou L, Routaboul JM, Caboche M (2010) Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant J 61:971–981

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Cheng JC, Sung ZR, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277:91–94

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodelling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Kim J, Park E, Kim JI, Kang C, Choi G (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16:3045–3058

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  PubMed  CAS  Google Scholar 

  • Ohto M, Stone SL, Harada JJ (2007) Genetic control of seed development and seed mass. In: Bradford KJ, Nonogaki H (eds) Seed development. Dormancy and germination. Blackwell, Oxford, pp 1–24

    Chapter  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Farrant J, Cooper K, Belghazi M, Job C, Job D, Courbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for dormancy alleviation. Plant J 50:452–465

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giradaut J (1994) Regulation of gene expression program during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    PubMed  CAS  Google Scholar 

  • Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15: 1998–2006

    Article  PubMed  CAS  Google Scholar 

  • Perruc E, Kinoshita N, Lopez-Molina L (2007) The role of chromatin-remodelling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. Plant J 52:927–936

    Article  PubMed  CAS  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Bergervoet JHW, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252

    PubMed  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, Ezcurra I, Rask L, Bäumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    Article  PubMed  CAS  Google Scholar 

  • Rider SD, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43

    Article  CAS  Google Scholar 

  • Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette M-L, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    Article  PubMed  CAS  Google Scholar 

  • Rubio de Casas R, Kovach K, Dittmar E, Barua D, Barco B, Donohue K (2012) Seed after-ripening and dormancy determine adult life history independently of germination timing. New Phytol 194:868–879

    Article  Google Scholar 

  • Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL (2008) HAB1–SWI3B interaction reveals a link between abscisic acid signalling and putative SWI/SNF chromatin-remodelling complexes in Arabidopsis. Plant Cell 20:2972–2988

    Article  PubMed  CAS  Google Scholar 

  • Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670

    Article  PubMed  CAS  Google Scholar 

  • Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7:557–567

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    Article  PubMed  CAS  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Sasaki K (1982) Transcriptional activation and structural alteration of wheat chromatin during germination and seedling-growth. Physiol Plant 54:41–46

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, McCarty D (2008) Functional symmetry of the B3 network controlling seed development. Curr Opin Plant Biol 11:548–553

    Article  PubMed  CAS  Google Scholar 

  • Tai HH, Tai GC, Beardmore T (2005) Dynamic histone acetylation of late embryonic genes during seed germination. Plant Mol Biol 59:909–925

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161

    Article  PubMed  CAS  Google Scholar 

  • Tessadori F, Van Driel R, Fransz P (2004) Cytogenetics as a tool to study gene regulation. Trends Plant Sci 9:147–153

    Article  PubMed  CAS  Google Scholar 

  • Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes R-K, Van Driel R, Voesenek LACJ, Spillane C, Pikaard CS, Fransz P, Peeters AJM (2009) PHYTOCHROME B and HISTONE DEACETYLASE 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 5:e1000638

    Article  PubMed  CAS  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    Article  PubMed  CAS  Google Scholar 

  • Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    Article  PubMed  CAS  Google Scholar 

  • van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, Koornneef M, Fransz P, Soppe WJJ (2011) Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci USA 108:20219–20224

    Article  PubMed  Google Scholar 

  • van Zanten M, Carles A, Li Y, Soppe WJJ (2012) Control and consequences of chromatin compaction during seed maturation in Arabidopsis thaliana. Plant Signal Behav 7:1–4

    Article  CAS  Google Scholar 

  • Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol 49:645–651

    Article  PubMed  CAS  Google Scholar 

  • Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J 63:848–860

    Article  PubMed  CAS  Google Scholar 

  • Willmann MR, Mehalick AJ, Packer RL, Jenik PD (2011) MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol 155:1871–1884

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18: 805–814

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ogas J (2009) An epigenetic perspective on developmental regulation of seed genes. Mol Plant 2:610–627

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen HM, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007a) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Germann S, Blus BJ, Khorasanizadeh S, Gaudin V, Jacobsen SE (2007b) The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14:869–871

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Rider SD Jr, Henderson JT, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg HJ, Romero-Severson J, Muir WM, Ogas J (2008) The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. J Biol Chem 283:22637–22648

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Qiu Z, Hu Y, Yang F, Yan S, Zhao L, Li B, He S, Huang M, Li J, Li L (2011) ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter-associated histone acetylation. Physiol Plant 143:287–296

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bishop B, Ringenberg W, Muir WM, Ogas J (2012a) The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. Plant Physiol 159: 418–432

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hu Y, Yan S, Li H, He S, Huang M, Li L (2012b) ABA-mediated inhibition of seed germination is associated with ribosomal DNA chromatin condensation, decreased transcription, and ribosomal RNA gene hypoacetylation. Plant Mol Biol 79:285–293

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJ, Li Y, Liu Y (2012) A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol 193:605–616

    Article  PubMed  CAS  Google Scholar 

  • Zluvova J, Janousek B, Vyskot B (2001) Immunohistochemicalstudy of DNA methylation dynamics during plant development. J Exp Bot 52:2265–2273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work on epigenetic regulation was supported by VENI grant 863.11.008 of the Netherlands Organization for Scientific Research and EMBO Long Term Fellowship grant ATLF 700–2010 to MvZ, by the National Natural Science Foundation of China (No. 30871334 and No. 31071063) to YL, and by the Deutsche Forschungsgemeinschaft (SO 691/3-1) and the Max Planck Society to WJJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim J. J. Soppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Zanten, M., Liu, Y., Soppe, W.J.J. (2013). Epigenetic Signalling During the Life of Seeds. In: Grafi, G., Ohad, N. (eds) Epigenetic Memory and Control in Plants. Signaling and Communication in Plants, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35227-0_7

Download citation

Publish with us

Policies and ethics