Skip to main content

Environmental Effect on Egress Simulation

  • Conference paper
Motion in Games (MIG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Included in the following conference series:

Abstract

Evacuation and egress simulations can be a useful tool for studying the effect of design decisions on the flow of agent movement. This type of simulation can be used to determine before hand the effect of design decisions and enable exploration of potential improvements. In this work, we study at how agent egress is affected by the environment in real world and large scale virtual environments and investigate metrics to analyze the flow. Our work differs from many evacuation systems in that we support grouping restrictions between agents (e.g., families or other social groups traveling together), and model scenarios with multiple modes of transportation with physically realistic dynamics (e.g., individuals walk from a building to their own cars and leave only when all people in the group arrive).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bekris, K.E., Tsianos, K., Kavraki, L.E.: A decentralized planner that guarantees the safety of communicating vehicles with complex dynamics that replan online. In: Proc. IEEE Int. Conf. Intel. Rob. Syst., IROS (2007)

    Google Scholar 

  2. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-Body Collision Avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Blum, J., Eskandarian, A.: The impact of multi-modal transportation on the evacuation efficiency of building complexes. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, pp. 702–707 (October 2004)

    Google Scholar 

  4. Christensen, K., Sasaki, Y.: Agent-based emergency evacuation simulation with individuals with disabilities in the population. Journal of Artificial Societies and Social Simulation 11(39) (2008)

    Google Scholar 

  5. Fang, Z., Li, Q., Li, Q., Han, L.D., Wang, D.: A proposed pedestrian waiting-time model for improving space-time use efficiency in stadium evacuation scenarios. Building and Environment 46, 1774–1784 (2011)

    Article  Google Scholar 

  6. Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: A least-effort approach to crowd simulation. In: SCA 2010: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, Madrid (2010)

    Google Scholar 

  7. Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: Clearpath: Highly parallel collision avoidance for multi-agent simulation. In: SCA 2009: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–187. Eurographics Association (2009)

    Google Scholar 

  8. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 1–24 (2005)

    Google Scholar 

  9. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature, 487–490 (2000)

    Google Scholar 

  10. Johnson, C., Nilsen-Nygaard, L.: Extending the use of evacuation simulators to support counter terrorism. In: International Systems Safety Conference (2008)

    Google Scholar 

  11. Kapadia, M., Wang, M., Singh, S., Reinman, G., Faloutsos, P.: Scenario space: characterizing coverage, quality, and failure of steering algorithms. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2011, pp. 53–62. ACM, New York (2011), http://doi.acm.org/10.1145/2019406.2019414

    Google Scholar 

  12. Pauls, J.: The movement of people in buildings and design solutions for means of egress. Fire Technology 20, 27–47 (1984), http://dx.doi.org/10.1007/BF02390046

    Article  Google Scholar 

  13. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2007)

    Google Scholar 

  14. Pelechano, N., Allbeck, J., Badler, N.: Virtual Crowds: Methods, Simulation, and Control. Synthesis Lectures on Computer Graphics and Animation. Morgan & Claypool (2008)

    Google Scholar 

  15. Pelechano, N., Badler, N.: Modeling crowd and trained leader behavior during building evacuation. IEEE Computer Graphics and Applications 26, 80–86 (2006)

    Article  Google Scholar 

  16. Pelechano, N., Malkawi, A.: Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches. Automation in Construction 17, 377–385 (2008)

    Article  Google Scholar 

  17. Pursals, S.C., Garzon, F.G.: Optimal building evacuation time considering evacuation routes. European Journal of Operational Research 192, 692–699 (2009)

    Article  MATH  Google Scholar 

  18. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference (1999)

    Google Scholar 

  19. Rodriguez, S., Amato, N.M.: Utilizing roadmaps in evacuation planning. In: 24th Intern. Conf. on Computer Animation and Social Agents, CASA (2011); Intern. Journal of Virtual Reality, 67–73 (2011)

    Google Scholar 

  20. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite for evaluating steering behaviors. Comput. Animat. Virtual Worlds 20, 533–548 (2009)

    Article  Google Scholar 

  21. Singh, S., Kapadia, M., Hewlett, B., Reinman, G., Faloutsos, P.: A modular framework for adaptive agent-based steering. In: Symposium on Interactive 3D Graphics and Games, I3D 2011, pp. 141–150. ACM, New York (2011), http://doi.acm.org/10.1145/1944745.1944769

    Google Scholar 

  22. Thompson, P., Marchant, E.: A computer model for the evacuation of large building populations. Fire Safety Journal 24, 131–148 (1995)

    Article  Google Scholar 

  23. Torrens, P., Nara, A., Li, X., Zhu, H., Griffin, W., Brown, S.: An extensible simulation environment and movement metrics for testing walking behavior in agent-based models. Computers, Environment and Urban Systems 36(1), 1–17 (2012)

    Article  MATH  Google Scholar 

  24. Zhang, X., Chang, G.: Optimal guidance of pedestrian-vehicle mixed flows in urban evacuation network. In: The 90th Annual Meeting of the Transportation Research Board (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodriguez, S., Giese, A., Amato, N.M., Zarrinmehr, S., Al-Douri, F., Clayton, M.J. (2012). Environmental Effect on Egress Simulation. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics