Skip to main content

Electrospun Functional Nanofibers and Their Applications in Chemical Sensors and Li-Ion Batteries

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

One-dimensional nanobuilding blocks such as nanowires, nanotubes, and nanofibers have been widely studied due to their fascinating electronic transport characteristics, high surface-to-volume ratios, and quantum confinement effect. More recently, as one of the most efficient techniques for the realization of nonwoven fiber networks, the electrospinning method has attracted much attention. With a number of materials explored, such as polymers, metals, ceramics, and their composites, nanofiber structures with a large surface area, a high degree of porosity, and controlled surface functionalities have been prepared by the electrospinning route. Polymeric nanofibers or metal salt precursor/polymer composite fibers, which are on the order of several tens of hundreds of nanometers, are collected via the electrical charging of a suspended droplet of polymer solution with/without an inorganic precursor. During the electrospinning process, a hemispherical surface of the droplet at the end of the needle is pulled to form a Taylor cone. When the repulsive electrical force is large enough to overcome the surface tension of the Taylor cone by increasing the applied electric field, a charged jet of the solution is ejected from the Taylor cone. Subsequently, the unstable and rapid whipping jet evaporates the solvent and falls down in the shape of a thin nanofiber on the collector, as illustrated in Fig. 23.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7(1):63–75

    Google Scholar 

  2. Szklarski Z, Zakrzewska K, Rekas M (1989) Thin oxide-films as gas sensors. Thin Solid Films 174:269–275

    Google Scholar 

  3. Sberveglieri G, Benussi P, Coccoli G, Gropelli S, Nelli P (1990) Reactively sputtered indium tin oxide polycrystalline thin-films as NO and NO2 gas sensors. Thin Solid Films 186(2):349–360

    Google Scholar 

  4. Nanto H, Minami T, Takata S (1986) Zinc-oxide thin-film ammonia gas sensors with high-sensitivity and excellent selectivity. J Appl Phys 60(2):482–484

    Google Scholar 

  5. Advani GN, Jordan AG (1980) Thin-films of SnO2 as solid-state gas sensors. J Electron Mater 9(1):29–49

    Google Scholar 

  6. Oyabu T (1982) Sensing characteristics of SnO2 thin-film gas sensor. J Appl Phys 53(4):2785–2787

    Google Scholar 

  7. Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl Mater Interfaces 3(7):2246–2252

    Google Scholar 

  8. Wang ZL (2009) ZnO nanowire and nanobelt platform for nanotechnology. Mater Sci Eng R 64(3–4):33–71

    Google Scholar 

  9. Li X, Wang Y, Lei Y, Gu Z (2012) Highly sensitive H2S sensor based on template-synthesized CuO nanowires. RSC Adv 2(6):2302

    Google Scholar 

  10. Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y (2010) Single beta-AgVO3 nanowire H2S sensor. Nano Lett 10(7):2604–2608

    Google Scholar 

  11. Kim ID, Rothschild A (2011) Nanostructured metal oxide gas sensors prepared by electrospinning. Polym Adv Technol 22(3):318–325

    Google Scholar 

  12. Watson J (1984) The tin oxide gas sensor and its applications. Sens Actuator 5(1):29–42

    Google Scholar 

  13. Morrison SR (1987) Mechanism of semiconductor gas sensor operation. Sens Actuator 11(3):283–287

    Google Scholar 

  14. Kim ID, Jeon EK, Choi SH, Choi DK, Tuller HL (2010) Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J Electroceram 25(2–4):159–167

    Google Scholar 

  15. Shin J, Choi SJ, Youn DY, Kim ID (2012) Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J Electroceram 29(2):106–116

    Google Scholar 

  16. Choi S-H, Choi S-J, Min BK, Lee WY, Park JS, Kim I-D (2013) Facile synthesis of p-type perovskite SrTi0.65Fe0.35O3-δ nanofibers prepared by electrospinning and their oxygen-sensing properties. Macromol Mater Eng 298:521–527

    Google Scholar 

  17. Choi SJ, Lee I, Jang BH, Youn DY, Ryu WH, Park CO, Kim ID (2013) Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal Chem 85(3):1792–1796

    Google Scholar 

  18. Choi SH, Hwang IS, Lee JH, Oh SG, Kim ID (2011) Microstructural control and selective C2H5OH sensing properties of Zn2SnO4 nanofibers prepared by electrospinning. Chem Commun 47(33):9315–9317

    Google Scholar 

  19. Shin J, Choi S-J, Lee I, Youn D-Y, Park CO, Lee J-H, Tuller HL, Kim I-D (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23: 2357–2367

    Google Scholar 

  20. Xu L, Dong B, Wang Y, Bai X, Liu Q, Song H (2010) Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sens Actuators B 147(2):531–538

    Google Scholar 

  21. Wei S, Zhang Y, Zhou M (2011) Toluene sensing properties of SnO2–ZnO hollow nanofibers fabricated from single capillary electrospinning. Solid State Commun 151(12):895–899

    Google Scholar 

  22. Zhang ZY, Li XH, Wang CH, Wei LM, Liu YC, Shao CL (2009) ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C 113(45):19397–19403

    Google Scholar 

  23. Xu L, Song H, Dong B, Wang Y, Chen J, Bai X (2010) Preparation and bifunctional gas sensing properties of porous In2O3-CeO2 binary oxide nanotubes. Inorg Chem 49(22):10590–10597

    Google Scholar 

  24. Wei S, Zhou M, Du W (2011) Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens Actuators B 160(1):753–759

    Google Scholar 

  25. Zhang J, Choi S-W, Kim SS (2011) Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: preparation and gas sensing. J Solid State Chem 184(11):3008–3013

    Google Scholar 

  26. Li D, Xia YN (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938

    Google Scholar 

  27. Xu L, Zheng R, Liu S, Song J, Chen J, Dong B, Song H (2012) NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg Chem 51(14):7733–7740

    Google Scholar 

  28. Cho NG, Yang DJ, Jin M-J, Kim H-G, Tuller HL, Kim I-D (2011) Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sens Actuators B 160(1):1468–1472

    Google Scholar 

  29. Cho S, Kim D-H, Lee B-S, Jung J, Yu W-R, Hong S-H, Lee S (2012) Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process. Sens Actuators B 162(1):300–306

    Google Scholar 

  30. Choi SH, Ankonina G, Youn DY, Oh SG, Hong JM, Rothschild A, Kim ID (2009) Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano 3(9):2623–2631

    Google Scholar 

  31. Cho NG, Kim ID (2011) NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route. Sens Actuator B Chem 160(1):499–504

    Google Scholar 

  32. Cho NG, Woo HS, Lee JH, Kim ID (2011) Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template. Chem Commun 47(40):11300–11302

    Google Scholar 

  33. Park JY, Choi SW, Kim SS (2010) A synthesis and sensing application of hollow ZnO nanofibers with uniform wall thicknesses grown using polymer templates. Nanotechnology 21(47):475601

    Google Scholar 

  34. Kim WS, Lee BS, Kim DH, Kim HC, Yu WR, Hong SH (2010) SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance. Nanotechnology 21(24):245605

    Google Scholar 

  35. Bognitzki M, Frese T, Steinhart M, Greiner A, Wendorff JH, Schaper A, Hellwig M (2001) Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends. Polym Eng Sci 41(6):982–989

    Google Scholar 

  36. Han SO, Son WK, Cho DW, Youk JH, Park WH (2004) Preparation of porous ultra-fine fibres via selective thermal degradation of electrospun polyetherimide/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibres. Polym Degrad Stab 86(2):257–262

    Google Scholar 

  37. Peng M, Li DS, Shen L, Chen Y, Zheng Q, Wang HJ (2006) Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends. Langmuir 22(22):9368–9374

    Google Scholar 

  38. Pai CL, Boyce MC, Rutledge GC (2009) Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Abstr Pap Am Chem S 238

    Google Scholar 

  39. Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59(24–25):2998–3001

    Google Scholar 

  40. Nayani K, Katepalli H, Sharma CS, Sharma A, Patil S, Venkataraghavan R (2012) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind Eng Chem Res 51(4):1761–1766

    Google Scholar 

  41. Hong YL, Chen XS, Jing XB, Fan HS, Gu ZW, Zhang XD (2010) Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv Funct Mater 20(9):1503–1510

    Google Scholar 

  42. Shengyuan Y, Peining Z, Nair AS, Ramakrishna S (2011) Rice grain-shaped TiO2 mesostructures – synthesis, characterization and applications in dye-sensitized solar cells and photocatalysis. J Mater Chem 21(18):6541

    Google Scholar 

  43. Wang W, Zhou JY, Zhang SS, Song J, Duan HG, Zhou M, Gong CS, Bao Z, Lu BA, Li XD, Lan W, Xie EQ (2010) A novel method to fabricate silica nanotubes based on phase separation effect. J Mater Chem 20(41):9068–9072

    Google Scholar 

  44. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13(1):70–72

    Google Scholar 

  45. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578

    Google Scholar 

  46. Morrison SR (1987) Selectivity in semiconductor gas sensors. Sens Actuator 12(4):425–440

    Google Scholar 

  47. Tong MS, Dai GR, Gao DS (2001) Surface modification of oxide thin film and its gas-sensing properties. Appl Surf Sci 171(3–4):226–230

    Google Scholar 

  48. Lin HM, Hsu CM, Yang HY, Leeb PY, Yang CC (1994) Nanocrystalline WO3-based H2S sensors. Sens Actuat B Chem 22(1):63–68

    Google Scholar 

  49. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuator B Chem 5(1–4):7–19

    Google Scholar 

  50. Yang DJ, Kamienchick I, Youn DY, Rothschild A, Kim ID (2010) Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater 20(24):4258–4264

    Google Scholar 

  51. Dong KY, Choi JK, Hwang IS, Lee JW, Kang BH, Ham DJ, Lee JH, Ju BK (2011) Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater. Sens ActuatOR B Chem 157(1):154–161

    Google Scholar 

  52. Choi J-K, Hwang I-S, Kim S-J, Park J-S, Park S-S, Jeong U, Kang YC, Lee J-H (2010) Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens Actuators B 150(1):191–199

    Google Scholar 

  53. Matsushima S, Teraoka Y, Miura N, Yamazoe N (1988) Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors. Jpn J Appl Phys 27(10):1798–1802

    Google Scholar 

  54. Zhang H, Li Z, Liu L, Xu X, Wang Z, Wang W, Zheng W, Dong B, Wang C (2010) Enhancement of hydrogen monitoring properties based on Pd–SnO2 composite nanofibers. Sens Actuators B 147(1):111–115

    Google Scholar 

  55. Liu L, Li SC, Zhuang J, Wang LY, Zhang JB, Li HY, Liu Z, Han Y, Jiang XX, Zhang P (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens Actuator B Chem 155(2):782–788

    Google Scholar 

  56. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Google Scholar 

  57. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269

    Google Scholar 

  58. Tarascon JM (2010) Key challenges in future Li-battery research. Philos T R Soc A 368(1923):3227–3241

    Google Scholar 

  59. Jeong G, Kim YU, Kim H, Kim YJ, Sohn HJ (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4(6):1986–2002

    Google Scholar 

  60. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301

    Google Scholar 

  61. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Google Scholar 

  62. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Google Scholar 

  63. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Google Scholar 

  64. JrO B (1999) Handbook of battery materials. Wiley-VCH, Weinheim/New York

    Google Scholar 

  65. Inaba M, Ogumi Z (2001) Up-to-date development of lithium-ion batteries in Japan. IEEE Electr Insul M 17(6):6–20

    Google Scholar 

  66. Schalkwijk WAV, Scrosati B (2002) Advances in lithium-ion batteries. Kluwer/Plenum, New York

    Google Scholar 

  67. Takehara Z (1997) Future prospects of the lithium metal anode. J Power Sources 68(1):82–86

    Google Scholar 

  68. Peled E, Golodnitsky D, Ardel G, Eshkenazy V (1995) The Sei model – application to lithium polymer electrolyte batteries. Electrochim Acta 40(13–14):2197–2204

    Google Scholar 

  69. Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8):1176–1180

    Google Scholar 

  70. Ryu WH, Shin J, Jung JW, Kim ID (2013) Cobalt(II) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. J Mater Chem A 1(10):3239–3243

    Google Scholar 

  71. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 16(18):2393–2397

    Google Scholar 

  72. Lee BS, Son SB, Park KM, Yu WR, Oh KH, Lee SH (2012) Anodic properties of hollow carbon nanofibers for Li-ion battery. J Power Sources 199:53–60

    Google Scholar 

  73. Liu BX, Yu YH, Chang J, Yang XJ, Wu DZ, Yang XP (2011) An enhanced stable-structure core-shell coaxial carbon nanofiber web as a direct anode material for lithium-based batteries. Electrochem Commun 13(6):558–561

    Google Scholar 

  74. Chen YM, Lu ZG, Zhou LM, Mai YW, Huang HT (2012) In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. Nanoscale 4(21):6800–6805

    Google Scholar 

  75. Lee BS, Son SB, Park KM, Lee G, Oh KH, Lee SH, Yu WR (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4(12):6701–6709

    Google Scholar 

  76. Dey AN (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118(10):1547–1549

    Google Scholar 

  77. Huggins RA (1999) Lithium alloy negative electrodes. J Power Sources 81:13–19

    Google Scholar 

  78. Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39(8):3115–3141

    Google Scholar 

  79. Weppner W, Huggins RA (1978) Thermodynamic properties of intermetallic systems lithium-antimony and lithium-bismuth. J Electrochem Soc 125(1):7–14

    Google Scholar 

  80. Wen CJ, Huggins RA (1981) Thermodynamic study of the lithium-tin system. J Electrochem Soc 128(6):1181–1187

    Google Scholar 

  81. Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90

    Google Scholar 

  82. Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128(4):725–729

    Google Scholar 

  83. Stjohn MR, Furgala AJ, Sammells AF (1982) Thermodynamic studies of Li-Ge alloys – application to negative electrodes for molten-salt batteries. J Electrochem Soc 129(2):246–250

    Google Scholar 

  84. Wen CJ, Huggins RA (1981) Chemical diffusion in intermediate phases in the lithium-silicon system. J Solid State Chem 37(3):271–278

    Google Scholar 

  85. Goward GR, Taylor NJ, Souza DCS, Nazar LF (2001) The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5. J Alloy Compd 329(1–2):82–91

    Google Scholar 

  86. Lupu C, Mao JG, Rabalais JW, Guloy AM, Richardson JW (2003) X-ray and neutron diffraction studies on “Li4.4Sn”. Inorg Chem 42(12):3765–3771

    Google Scholar 

  87. Yang HB, Fu PP, Zhang HF, Song YJ, Zhou ZX, Wu MT, Huang LH, Xu G (2007) Amorphous Si film anode coupled with LiCoO2 cathode in Li-ion cell. J Power Sources 174(2):533–537

    Google Scholar 

  88. Kepler KD, Vaughey JT, Thackeray MM (1999) LixCu6Sn5 (0 < x < 13): An intermetallic insertion electrode for rechargeable lithium batteries. Electrochem Solid State 2(7):307–309

    Google Scholar 

  89. Li H, Huang XJ, Chen LQ, Wu ZG, Liang Y (1999) A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid State 2(11):547–549

    Google Scholar 

  90. Kang K, Lee HS, Han DW, Kim GS, Lee D, Lee G, Kang YM, Jo MH (2010) Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl Phys Lett 96(5)

    Google Scholar 

  91. Cui LF, Yang Y, Hsu CM, Cui Y (2009) Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9(9):3370–3374

    Google Scholar 

  92. Yoo JK, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24(40):5452–5456

    Google Scholar 

  93. Li LM, Yin XM, Liu SA, Wang YG, Chen LB, Wang TH (2010) Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem Commun 12(10):1383–1386

    Google Scholar 

  94. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu LB, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):309–314

    Google Scholar 

  95. Yu Y, Gu L, Wang CL, Dhanabalan A, van Aken PA, Maier J (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48(35):6485–6489

    Google Scholar 

  96. Kim D, Lee D, Kim J, Moon J (2012) Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 4(10):5408–5415

    Google Scholar 

  97. Bonino CA, Ji LW, Lin Z, Toprakci O, Zhang XW, Khan SA (2011) Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces 3(7):2534–2542

    Google Scholar 

  98. Zou L, Gan L, Lv RT, Wang MX, Huang ZH, Kang FY, Shen WC (2011) A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon 49(1):89–95

    Google Scholar 

  99. Yu Y, Gu L, Zhu CB, van Aken PA, Maier J (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131(44):15984–15985

    Google Scholar 

  100. Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12(2):802–807

    Google Scholar 

  101. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887

    Google Scholar 

  102. Li YG, Tan B, Wu YY (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270

    Google Scholar 

  103. Kim SW, Lee HW, Muralidharan P, Seo DH, Yoon WS, Kim DK, Kang K (2011) Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4(5):505–510

    Google Scholar 

  104. Ji LW, Toprakci O, Alcoutlabi M, Yao YF, Li Y, Zhang S, Guo BK, Lin Z, Zhang XW (2012) Alpha-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. Acs Appl Mater Interfaces 4(5):2672–2679

    Google Scholar 

  105. Wang B, Cheng JL, Wu YP, Wang D, He DN (2012) Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem Commun 23:5–8

    Google Scholar 

  106. Chaudhari S, Srinivasan M (2012) 1D hollow alpha-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J Mater Chem 22(43):23049–23056

    Google Scholar 

  107. Cherian CT, Sundaramurthy J, Kalaivani M, Ragupathy P, Kumar PS, Thavasi V, Reddy MV, Sow CH, Mhaisalkar SG, Ramakrishna S, Chowdari BVR (2012) Electrospun alpha-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem 22(24):12198–12204

    Google Scholar 

  108. Luo W, Hu XL, Sun YM, Huang YH (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22(18):8916–8921

    Google Scholar 

  109. Teh PF, Sharma Y, Pramana SS, Srinivasan M (2011) Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem 21(38):14999–15008

    Google Scholar 

  110. Lin Z, Ji LW, Woodroof MD, Zhang XW (2010) Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries. J Power Sources 195(15):5025–5031

    Google Scholar 

  111. Wang L, Yu Y, Chen PC, Zhang DW, Chen CH (2008) Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183(2):717–723

    Google Scholar 

  112. Yang G, Li YH, Ji HM, Wang HY, Gao P, Wang L, Liu HD, Pinto J, Jiang XF (2012) Influence of Mn content on the morphology and improved electrochemical properties of Mn3O4 vertical bar MnO@carbon nanofiber as anode material for lithium batteries. J Power Sources 216:353–362

    Google Scholar 

  113. Ding YH, Zhang P, Long ZL, Jiang Y, Huang JN, Yan WJ, Liu G (2008) Synthesis and electrochemical properties of Co3O4 nanofibers as anode materials for lithium-ion batteries. Mater Lett 62(19):3410–3412

    Google Scholar 

  114. Sahay R, Kumar PS, Aravindan V, Sundaramurthy J, Ling WC, Mhaisalkar SG, Ramakrishna S, Madhavi S (2012) High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J Phys Chem C 116(34):18087–18092

    Google Scholar 

  115. Ji LW, Medford AJ, Zhang XW (2009) Porous carbon nanofibers loaded with manganese oxide particles: formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19(31):5593–5601

    Google Scholar 

  116. Jung KN, Lee JI, Yoon S, Yeon SH, Chang W, Shin KH, Lee JW (2012) Manganese oxide/carbon composite nanofibers: electrospinning preparation and application as a bi-functional cathode for rechargeable lithium-oxygen batteries. J Mater Chem 22(41):21845–21848

    Google Scholar 

  117. Ji LW, Lin Z, Medford AJ, Zhang XW (2009) In-situ encapsulation of nickel particles in electrospun carbon nanofibers and the resultant electrochemical performance. Chem Eur J 15(41):10718–10722

    Google Scholar 

  118. Ji LW, Zhang XW (2009) Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochem Commun 11(4):795–798

    Google Scholar 

  119. Wang B, Cheng JL, Wu YP, Wang D, He DN (2013) Electrochemical performance of carbon/Ni composite fibers from electrospinning as anode material for lithium ion batteries. J Mater Chem A 1(4):1368–1373

    Google Scholar 

  120. Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2(8):818–837

    Google Scholar 

  121. Kubiaka P, Geserick J, Husing N, Wohfahrt-Mehrens A (2008) Electrochemical performance of mesoporous TiO2 anatase. J Power Sources 175(1):510–516

    Google Scholar 

  122. Liu B, Deng D, Lee JY, Aydil ES (2010) Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries. J Mater Res 25(8):1588–1594

    Google Scholar 

  123. Nuspl G, Yoshizawa K, Yamabe T (1997) Lithium intercalation in TiO2 modifications. J Mater Chem 7(12):2529–2536

    Google Scholar 

  124. Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667

    Google Scholar 

  125. Ryu WH, Nam DH, Ko YS, Kim RH, Kwon HS (2012) Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim Acta 61:19–24

    Google Scholar 

  126. Luo W, Hu XL, Sun YM, Huang YH (2012) Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries. J Mater Chem 22(11):4910–4915

    Google Scholar 

  127. Lu HW, Zeng W, Li YS, Fu ZW (2007) Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J Power Sources 164(2):874–879

    Google Scholar 

  128. Han H, Song T, Bae JY, Nazar LF, Kim H, Paik U (2011) Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ Sci 4(11):4532–4536

    Google Scholar 

  129. Zhao BT, Cai R, Jiang SM, Sha YJ, Shao ZP (2012) Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochim Acta 85:636–643

    Google Scholar 

  130. Zhang X, Kumar PS, Aravindan V, Liu HH, Sundaramurthy J, Mhaisalkar SG, Duong HM, Ramakrishna S, Madhavi S (2012) Electrospun TiO2-graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J Phys Chem C 116(28):14780–14788

    Google Scholar 

  131. Zhu PN, Wu YZ, Reddy MV, Nair AS, Chowdari BVR, Ramakrishna S (2012) Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries. RSC Adv 2(2):531–537

    Google Scholar 

  132. Nam SH, Shim HS, Kim YS, Dar MA, Kim JG, Kim WB (2010) Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl Mater Interfaces 2(7):2046–2052

    Google Scholar 

  133. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81:300–305

    Google Scholar 

  134. Jo MR, Jung YS, Kang YM (2012) Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Nanoscale 4(21):6870–6875

    Google Scholar 

  135. Choi HS, Kim T, Im JH, Park CR (2011) Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system. Nanotechnology 22(40)

    Google Scholar 

  136. Guo BK, Li Y, Yao YF, Lin Z, Ji LW, Xu GJ, Liang YZ, Shi Q, Zhang XW (2011) Electrospun Li4Ti5O12/C composites for lithium-ion batteries with high rate performance. Solid State Ion 204:61–65

    Google Scholar 

  137. Li HS, Shen LF, Zhang XG, Nie P, Chen L, Xu K (2012) Electrospun hierarchical Li4Ti4.95Nb0.05O12/carbon composite nanofibers for high rate lithium ion batteries. J Electrochem Soc 159(4):A426–A430

    Google Scholar 

  138. Wang L, Xiao QZ, Li ZH, Lei GT, Zhang P, Wu LJ (2012) Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries. J Solid State Electrochem 16(10):3307–3313

    Google Scholar 

  139. Zhu N, Liu W, Xue MQ, Xie ZA, Zhao D, Zhang MN, Chen JT, Cao TB (2010) Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 55(20):5813–5818

    Google Scholar 

  140. Han JT, Huang YH, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23(8):2027–2029

    Google Scholar 

  141. Tang K, Mu XK, van Aken PA, Yu Y, Maier J (2013) “Nano-Pearl-String” TiNb2O7 as anodes for rechargeable lithium batteries. Adv Energy Mater 3(1):49–53

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Integrated Smart Sensors funded by the Ministry of Education, Science and Technology as Global Frontier Project (CISS-2012M3A6A6054188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Doo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, ID., Choi, SJ., Ryu, WH. (2014). Electrospun Functional Nanofibers and Their Applications in Chemical Sensors and Li-Ion Batteries. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_6

Download citation

Publish with us

Policies and ethics