Skip to main content

Lignocellulose-Decomposing Bacteria and Their Enzyme Systems

  • Reference work entry
The Prokaryotes

Abstract

Cellulose and associated polysaccharides, such as xylans, comprise the major portion of the plant cell wall as structural polymers. As the plants evolved and distributed first in the seas and then on land, following their demise, the accumulated cellulosic materials had to be assimilated and returned to nature. Thus the cellulose-degrading bacteria have evolved to complement lignin-degrading microbial systems for the purpose of restoring the tremendous quantities of organic components of the plant cell wall to the environment for continued life cycles of carbon and energy on the global scale. This chapter is a sequel to a previous chapter of the same title from the second edition of this treatise (Coughlan MP, Mayer F (1992) The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol I, 2nd edn. Springer, New York, pp 459–516.) and represents an update of our own subsequent chapter (Bayer EA, Shoham Y, Lamed R (2006) Cellulose-decomposing prokaryotes and their enzyme systems. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 2, 3rd edn. Springer, New York, pp 578–617.) which appeared in the third edition. Although the basic elements of the previous chapters are still essentially up to date, the field of the cellulose-decomposing bacteria has since advanced greatly, owing to two major factors: (1) the advent, progression, and increasing facility of genome- and metagenome-sequencing efforts and (2) the current initiatives to utilize plant-derived biomass for the production of biofuels as an alternative to fossil fuels for an energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JJ, Webb BA, Spencer HL, Smith SP (2005) Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Biochemistry 44:2173–2182

    PubMed  CAS  Google Scholar 

  • Adams JJ, Gregg K, Bayer EA, Boraston AB, Smith SP (2008) Structural basis for a novel mode of Clostridium perfringens toxin complex formation. Proc Natl Acad Sci USA 105:12194–12199

    PubMed  CAS  Google Scholar 

  • Ahsan MM, Kimura T, Karita S, Sakka K, Ohmiya K (1996) Cloning, DNA sequencing, and expression of the gene encoding Clostridium thermocellum cellulase CelJ, the largest catalytic component of the cellulosome. J Bacteriol 178:5732–5740

    PubMed  CAS  Google Scholar 

  • Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294

    PubMed  CAS  Google Scholar 

  • Armand S, Drouillard S, Schulein M, Henrissat B, Driguez H (1997) A bifunctionalized fluorogenic tetrasaccharide as a substrate to study cellulases. J Biol Chem 272:2709–2713

    PubMed  CAS  Google Scholar 

  • Asai K, Ootsuji T, Obata K, Matsumoto T, Fujita Y, Sadaie Y (2007) Regulatory role of RsgI in sigI expression in Bacillus subtilis. Microbiology 153:92–101

    PubMed  CAS  Google Scholar 

  • Atalla RH (1999) Celluloses. In: Pinto BM (ed) Comprehensive natural products chemistry, vol 3. Elsevier, Cambridge, pp 529–598

    Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    PubMed  CAS  Google Scholar 

  • Bach E, Schollmeyer E (1992) An ultraviolet-spectrophotometric method with 2-cyanoacetamide for the determination of the enzymatic degradation of reducing polysaccharides. Anal Biochem 203(2):335–339

    PubMed  CAS  Google Scholar 

  • Bagnara-Tardif C, Gaudin C, Belaich A, Hoest P, Citard T, Belaich J-P (1992) Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Gene 119:17–28

    PubMed  CAS  Google Scholar 

  • Bahari L, Gilad Y, Borovok I, Dassa B, Kahel-Raifer H, Jindou S, Nataf Y, Shoham Y, Lamed R, Bayer EA (2011) Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum. J Ind Microbiol Biotechnol 38:825–832

    PubMed  CAS  Google Scholar 

  • Barr BK, Hsieh Y-L, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592

    PubMed  CAS  Google Scholar 

  • Bassen RS, Romaniec MPM, Hazlewood GP, Freedman RB (1995) Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. Enzyme Microb Technol 17:705–711

    Google Scholar 

  • Bayer EA, Lamed R (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J Bacteriol 167:828–836

    PubMed  CAS  Google Scholar 

  • Bayer EA, Lamed R (1992) The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3:171–188

    PubMed  CAS  Google Scholar 

  • Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827

    PubMed  CAS  Google Scholar 

  • Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559

    PubMed  CAS  Google Scholar 

  • Bayer EA, Morag E, Lamed R (1994) The cellulosome—A treasure-trove for biotechnology. Trends Biotechnol 12:378–386

    Google Scholar 

  • Bayer EA, Morag E, Shoham Y, Tormo J, Lamed R (1996) The cellulosome: a cell-surface organelle for the adhesion to and degradation of cellulose. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss., New York, pp 155–182

    Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998a) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557

    PubMed  CAS  Google Scholar 

  • Bayer EA, Morag E, Lamed R, Yaron S, Shoham Y (1998b) Cellulosome structure: four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics. In: Claeyssens M, Nerinckx W, Piens K (eds) Carbohydrases from Trichoderma reesei and other microorganisms. The Royal Society of Chemistry, London, pp 39–67

    Google Scholar 

  • Bayer EA, Shimon LJW, Lamed R, Shoham Y (1998c) Cellulosomes: structure and ultrastructure. J Struct Biol 124:221–234

    PubMed  CAS  Google Scholar 

  • Bayer EA, Coutinho PM, Henrissat B (1999) Cellulosome-like sequences in Archaeoglobus fulgidus: an enigmatic vestige of cohesin and dockerin domains. FEBS Lett 463:277–280

    PubMed  CAS  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2000) The cellulosome—an exocellular organelle for degrading plant cell wall polysaccharides. In: Doyle RJ (ed) Glycomicrobiology. Kluwer Academic/Plenum, New York, pp 387–439

    Google Scholar 

  • Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    PubMed  CAS  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2006) Cellulose-decomposing prokaryotes and their enzyme systems. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 2, 3rd edn. Springer, New York, pp 578–617

    Google Scholar 

  • Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377

    PubMed  CAS  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892

    PubMed  CAS  Google Scholar 

  • Béguin P (1983) Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem 131:333–336

    PubMed  Google Scholar 

  • Béguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44:219–248

    PubMed  Google Scholar 

  • Béguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Lett 13:25–58

    Google Scholar 

  • Béguin P, Lemaire M (1996) The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Molec Biol 31:201–236

    Google Scholar 

  • Belaich J-P, Tardif C, Belaich A, Gaudin C (1997) The cellulolytic system of Clostridium cellulolyticum. J Biotechnol 57:3–14

    PubMed  CAS  Google Scholar 

  • Belaich A, Belaich J-P, Fierobe H-P, Gaudin C, Pagès S, Reverbel-Leroy C, Tardif C (1998) Cellulosome analysis and cellulases CelF and CelG from Clostridium cellulolyticum. In: Claeyssens M, Nerinckx W, Piens K (eds) Carbohydrases from Trichoderma reesei and other microorganisms. The Royal Society of Chemistry, London, pp 73–86

    Google Scholar 

  • Belaich J-P, Belaich A, Fierobe H-P, Gal L, Gaudin C, Pagès S, Reverbel-Leroy C, Tardif C (1999) The cellulolytic system of Clostridium cellulolyticum. In: Ohmiya K, Hayashi K, Sakka K, Kobayashi Y, Karita S, Kimura T (eds) Genetics, biochemistry and ecology of cellulose degradation. Uni Publishers, Tokyo, pp 479–487

    Google Scholar 

  • Berg Miller ME, Antonopoulos DA, Rincon MT, Band M, Bari A, Akaiko1 T, Hernandez A, Kim R, Liu L, Thimmapuram J, Henrissat B, Coutinho PM, Borovok I, Jindou S, Lamed R, Flint HJ, Bayer EA, White BA (2009) Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. PLoS ONE 4:e6650

    Google Scholar 

  • Berg Miller ME, Yeoman CJ, Tringe SG, Edwards RA, Flint HJ, Lamed R, Bayer EA, White BA (2012) Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol 14:207–227

    PubMed  Google Scholar 

  • Berger E, Zhang D, Zverlov VV, Schwarz WH (2007) Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 268:194–201

    PubMed  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    PubMed  CAS  Google Scholar 

  • Bhat KM, Wood TM (1992) The cellulase of the anaerobic bacterium Clostridium thermocellum: isolation, dissociation, and reassociation of the cellulosome. Carbohydr Res 227:293–300

    CAS  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:285–290

    Google Scholar 

  • Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pagès S, de Philip P (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10:541–554

    PubMed  CAS  Google Scholar 

  • Blum DL, Kataeva IA, Li XL, Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182(5):1346–1351

    PubMed  CAS  Google Scholar 

  • Blumer-Schuette SE, Ozdemir I, Mistry D, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Woyke T, Mikhailova N, Pati A, Kyrpides NC, Ivanova N, Detter JC, Walston-Davenport K, Han S, Adams MW, Kelly RM (2011) Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. J Bacteriol 193:1483–1484

    PubMed  CAS  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    PubMed  CAS  Google Scholar 

  • Boraston AB, McLean BW, Kormos JM, Alam M, Gilkes NR, Haynes CA, Tomme P, Kilburn DG, Warren RA (1999) Carbohydrate-binding modules: diversity of structure and function. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 202–211

    Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    PubMed  CAS  Google Scholar 

  • Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1993) Feruloyl and p-coumaroyl esterases from the anaerobic fungus Neocallimastix strain MC-2: properties and functions in plant cell wall degradation. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 85–102

    Google Scholar 

  • Brás JL, Cartmell A, Carvalho AL, Verzé G, Bayer EA, Vazana Y, Correia MA, Prates JA, Ratnaparkhe S, Boraston AB, Romão MJ, Fontes CM, Gilbert HJ (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci USA 108:5237–5242

    PubMed  Google Scholar 

  • Brown SD, Raman B, McKeown CK, Kale SP, He ZL, Mielenz JR (2007) Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray. Appl Biochem Biotechnol 137:663–674

    PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Berg Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Walkin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106:1948–1953

    PubMed  CAS  Google Scholar 

  • Brulc JM, Wilson MK, Yeoman CJ, Berg Miller ME, Jeraldo P, Jindou S, Goldenfeld N, Flint HJ, Lamed R, Borovok I, Vodovnik M, Nelson KE, Bayer EA, White BA (2011) Cellulosomics, a gene-centric approach to investigating the intraspecific diversity and adaptation of Ruminococcus flavefaciens within the rumen. PLoS One 6:e25329

    PubMed  CAS  Google Scholar 

  • Brun E, Moriaud F, Gans P, Blackledge M, Barras F, Marion D (1997) Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi. Biochemistry 36:16074–16086

    PubMed  CAS  Google Scholar 

  • Burstein T, Shulman M, Jindou S, Petkun S, Frolow F, Shoham Y, Bayer EA, Lamed R (2009) Physical association of the catalytic and helper modules of a processive family-9 glycoside hydrolase is essential for activity. FEBS Lett 583:879–884

    PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    PubMed  CAS  Google Scholar 

  • Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ, Ferreira LM, Romao MJ, Fontes CM (2003) Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc Natl Acad Sci USA 100:13809–13814

    PubMed  CAS  Google Scholar 

  • Carvalho AL, Pires VM, Gloster TM, Turkenburg JP, Prates JA, Ferreira LM, Romao MJ, Davies GJ, Fontes CM, Gilbert HJ (2005) Insights into the structural determinants of cohesin-dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. J Mol Biol 349:909–915

    PubMed  CAS  Google Scholar 

  • Carvalho AL, Dias FMV, Nagy T, Prates JAM, Proctor MR, Smith N, Bayer EA, Davies GJ, Ferreira LMA, Ramão MJ, Fontes CMGA, Gilbert HJ (2007) Evidence for a dual binding mode of dockerin modules to cohesins. Proc Natl Acad Sci USA 104:3089–3094

    PubMed  CAS  Google Scholar 

  • Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Philips GO, Williams PA (eds) Cellulose sources and exploitation. Industrial utilization, biotechnology and physico-chemical properties. Ellis Horwood, New York, pp 3–12

    Google Scholar 

  • Chauvaux S, Béguin P, Aubert J-P, Bhat KM, Gow LA, Wood TM, Bairoch A (1990) Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. Biochem J 265:261–265

    PubMed  CAS  Google Scholar 

  • Chauvaux S, Matuschek M, Béguin P (1999) Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis cell envelopes. J Bacteriol 181:2455–2458

    PubMed  CAS  Google Scholar 

  • Chen H, Li XL, Blum DL, Ljungdahl LG (1998) Two genes of the anaerobic fungus Orpinomyces sp. strain PC-2 encoding cellulases with endoglucanase activities may have arisen by gene duplication. FEMS Microbiol Lett 159:63–68

    PubMed  CAS  Google Scholar 

  • Chitayat S, Adams JJ, Furness HS, Bayer EA, Smith SP (2008a) The solution structure of the C-terminal modular pair from Clostridium perfringens reveals a non-cellulosomal dockerin module. J Mol Biol 381:1202–1212

    PubMed  CAS  Google Scholar 

  • Chitayat S, Gregg K, Adams JJ, Ficko-Blean E, Bayer EA, Boraston AB, Smith SP (2008b) Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. J Mol Biol 375:20–28

    PubMed  CAS  Google Scholar 

  • Claeyssens M, Henrissat B (1992) Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci 1(10):1293–1297

    PubMed  CAS  Google Scholar 

  • Cottrell MT, Yu L, Kirchman DL (2005) Sequence and expression analyses of Cytophaga-like hydrolases in a Western Arctic metagenomic library and the Sargasso Sea. Appl Environ Microbiol 71:8506–8513

    PubMed  CAS  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) β-1,4-D-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    PubMed  CAS  Google Scholar 

  • Coughlan MP, Mayer F (1992) The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol I, 2nd edn. Springer, New York, pp 459–516

    Google Scholar 

  • Coutinho PM, Henrissat B (1999a) Carbohydrate-active enZYmes and associated MODular Organization server (CAZyModO Website). [Online]. http://afmb.cnrs-mrs.fr/∼pedro/DB/db.html. Accessed 17 Apr 2001

  • Coutinho PM, Henrissat B (1999b) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • Coutinho PM, Henrissat B (1999c) The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In: Ohmiya K, Hayashi K, Sakka K, Kobayashi Y, Karita S, Kimura T (eds) Genetics, biochemistry and ecology of cellulose degradation. Uni Publishers, Tokyo, pp 15–23

    Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003a) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    PubMed  CAS  Google Scholar 

  • Coutinho PM, Deleury E, Henrissat B (2003b) The families of carbohydrate-active enzymes in the genomic era. J Appl Glycosci 50:241–244

    CAS  Google Scholar 

  • Coutinho PM, Stam M, Blanc E, Henrissat B (2003c) Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci 8:563–565

    PubMed  CAS  Google Scholar 

  • Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL, Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MW (2011) Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res 39:3240–3254

    PubMed  CAS  Google Scholar 

  • Daniel RM, Toogood HS, Bergquist PL (1996) Thermostable proteases. Biotechnol Genet Eng Rev 13:51–100

    PubMed  CAS  Google Scholar 

  • Das NN, Das SC, Mukerjee AK (1984) On the ester linkage between lignin and 4-O-methyl-D-glucurono-D-xylan in jute fiber (Corchorus capsularis). Carbohydr Res 127:345–348

    CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    PubMed  CAS  Google Scholar 

  • Davies GJ, Mackenzie L, Varrot A, Dauter M, Brzozowski M, Schülein M, Withers SG (1998) Snapshots along an enzymatic reaction coordinate: analysis of a retaining β-glycoside hydrolase. Biochemistry 37:11707–11713

    PubMed  CAS  Google Scholar 

  • Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    PubMed  CAS  Google Scholar 

  • Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29:741–764

    PubMed  CAS  Google Scholar 

  • Devillard E, Goodheart DE, Karnati SK, Bayer EA, Lamed R, Miron J, Nelson KE, Morrison M (2004) Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J Bacteriol 186:136–145

    PubMed  CAS  Google Scholar 

  • Din, N, Damude HG, Gilkes NR, Miller RCJ, Warren RAJ, and Kilburn DG (1994) C1-Cx revisited: intramolecular synergism in a cellulase. Proc. Natl. Acad. Sci. USA 91: 11383–11387

    PubMed  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    PubMed  CAS  Google Scholar 

  • Ding S-Y, Bayer EA, Steiner D, Shoham Y, Lamed R (1999) A novel cellulosomal scaffoldin from acetivibrio cellulolyticus that contains a family-9 glycosyl hydrolase. J Bacteriol 181:6720–6729

    PubMed  CAS  Google Scholar 

  • Ding S-Y, Bayer EA, Steiner D, Shoham Y, Lamed R (2000) A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol 182:4915–4925

    PubMed  CAS  Google Scholar 

  • Ding S-Y, Rincon MT, Lamed R, Martin JC, McCrae SI, Aurilia V, Shoham Y, Bayer EA, Flint HJ (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183:1945–1953

    PubMed  CAS  Google Scholar 

  • Ding S-Y, Xu Q, Mursheda KA, Baker JO, Bayer EA, Barak Y, Lamed R, Sugiyama J, Rumbles G, Himmel ME (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 41:435–440

    PubMed  CAS  Google Scholar 

  • Divne C, Stahlberg J, Teeri T, Jones T (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325

    PubMed  CAS  Google Scholar 

  • DOE, U. S. (2008) U.S. Department of Energy’s bioenergy research centers – an overview of the science. DOE Office of Science, Washington, DC

    Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551

    PubMed  CAS  Google Scholar 

  • Doi RH, Tamura Y (2001) The Clostridium cellulovorans cellulosome: An enzyme complex with plant cell wall degrading activity. Chem Rec 1:24–32

    PubMed  CAS  Google Scholar 

  • Doi RH, Goldstein M, Hashida S, Park JS, Takagi M (1994) The Clostridium cellulovorans cellulosome. Crit Rev Microbiol 20:87–93

    PubMed  CAS  Google Scholar 

  • Doi RH, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A (1998) Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2:53–60

    PubMed  CAS  Google Scholar 

  • Doner LW, Irwin PL (1992) Assay of reducing end-groups in oligosaccaride homolgues with 2,2'-bicinchoninate. Anal Biochem 202:50–53

    PubMed  CAS  Google Scholar 

  • Driguez H (1997) Thiooligosaccharides in glycobiology. Topics Curr Chem 187:85–116

    CAS  Google Scholar 

  • Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y (2003a) Regulation of the cellulosomal CelS (cel48A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol 185:3042–3048

    PubMed  CAS  Google Scholar 

  • Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2003b) Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J Bacteriol 185:5109–5116

    PubMed  CAS  Google Scholar 

  • Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y (2005) Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. J Bacteriol 187:2261–2266

    PubMed  CAS  Google Scholar 

  • Ensor L, Stosz S, Weiner R (1999) Expression of multiple insoluble complex polysaccharide degrading enzyme systems by a marine bacterium. J Ind Microbiol Biotechnol 23:123–126

    PubMed  CAS  Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Biodegradation of hemicelluloses, microbial and enzymatic degradation of wood and wood components. Springer, Heidelberg, pp 181–397

    Google Scholar 

  • Ezer A, Matalon E, Jindou S, Borovok I, Atamna N, Yu Z, Morrison M, Bayer EA, Lamed R (2008) Cell-surface enzyme attachment is mediated by a family-37 carbohydrate-binding module, unique to Ruminococcus albus. J Bacteriol 190:8220–8222

    PubMed  CAS  Google Scholar 

  • Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, Tapia R, Han C, Lapidus A, Lucas S, Cheng JF, Pitluck S, Woyke T, Ivanova N, Mikhailova N, Land M, Hauser L, Argyros DA, Goodwin L, Hogsett D, Caiazza N (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193:2906–2907

    PubMed  CAS  Google Scholar 

  • Felix CR, Ljungdahl LG (1993) The cellulosome – the exocellular organelle of Clostridium. Annu Rev Microbiol 47:791–819

    PubMed  CAS  Google Scholar 

  • Fernandes AC, Fontes CM, Gilbert HJ, Hazlewood GP, Fernandes TH, Ferreira LMA (1999) Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem J 342:105–110

    PubMed  CAS  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    PubMed  CAS  Google Scholar 

  • Flint HJ, Martin J, McPherson CA, Daniel AS, Zhang JX (1993) A bifunctional enzyme, with separate xylanase and β(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 175:2943–2951

    PubMed  CAS  Google Scholar 

  • Flint HJ, Bayer EA, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    PubMed  CAS  Google Scholar 

  • Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VG (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483

    PubMed  CAS  Google Scholar 

  • Fraiberg M, Borovok I, Weiner RM, Lamed R (2010) Discovery and characterization of cadherin domains in Saccharophagus degradans 2-40. J Bacteriol 192:1066–1074

    PubMed  CAS  Google Scholar 

  • Fraiberg M, Borovok I, Bayer EA, Weiner RM, Lamed R (2011) Cadherin domains in the polysaccharide-degrading, marine bacterium Saccharophagus degradans 2-40 are carbohydrate-binding modules. J Bacteriol 193:283–285

    PubMed  CAS  Google Scholar 

  • Fujino T, Béguin P, Aubert J-P (1993) Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol 175:1891–1899

    PubMed  CAS  Google Scholar 

  • Gal L, Gaudin C, Belaich A, Pagès S, Tardif C, Belaich J-P (1997a) CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose. J Bacteriol 179:6595–6601

    PubMed  CAS  Google Scholar 

  • Gal L, Pagès S, Gaudin C, Belaich A, Reverbel-Leroy C, Tardif C, Belaich J-P (1997b) Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 63:903–909

    PubMed  CAS  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    PubMed  CAS  Google Scholar 

  • Garcia E, Johnston D, Whitaker JR, Shoemaker SP (1993) Assessment of endo-1,4-β-D-glucanase activity by a rapid colorimetric assay using disodium 2,2'-bicinchoninate. J Food Biochem 17:135–145

    CAS  Google Scholar 

  • Gaudin C, Belaich A, Champ S, Belaich JP (2000) CelE, a multidomain cellulase from Clostridium cellulolyticum: a key enzyme in the cellulosome? J Bacteriol 182:1910–1915

    PubMed  CAS  Google Scholar 

  • Gerngross UT, Romaniec MPM, Kobayashi T, Huskisson NS, Demain AL (1993) Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol 8:325–334

    PubMed  CAS  Google Scholar 

  • Ghose TK (1987) Measurments of cellulase activity. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  • Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL (2000) Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 40(5):333–340

    Google Scholar 

  • Gilbert, HJ, Ed. (2012) Cellulases. San Diego, Elsevier.

    Google Scholar 

  • Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    CAS  Google Scholar 

  • Gilbert HJ, Hazlewood GP, Laurie JI, Orpin CG, Xue GP (1992) Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol Microbiol 6:2065–2072

    PubMed  CAS  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RCJ, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55(2):303–315

    PubMed  CAS  Google Scholar 

  • Green F 3rd, Clausen CA, Highley TL (1989) Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal Biochem 182(2):197–199

    PubMed  CAS  Google Scholar 

  • Guglielmi G, Béguin P (1998) Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromosome. FEMS Microbiol Lett 161:209–215

    PubMed  CAS  Google Scholar 

  • Haigler CH, Weimer PJ (eds) (1991) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York

    Google Scholar 

  • Han SO, Cho HY, Yukawa H, Inui M, Doi RH (2004) Regulation of expression of cellulosomes and noncellulosomal (hemi)cellulolytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J Bacteriol 186:4218–4227

    PubMed  CAS  Google Scholar 

  • Han SO, Yukawa H, Inui M, Doi RH (2005) Molecular cloning and transcriptional and expression analysis of engO, encoding a new noncellulosomal family 9 enzyme, from Clostridium cellulovorans. J Bacteriol 187:4884–4889

    PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    PubMed  CAS  Google Scholar 

  • Hazlewood GP, Gilbert HJ (1993) Molecular biology of hemicellulases. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 103–126

    Google Scholar 

  • Hemme CL, Mouttaki H, Lee YJ, Zhang G, Goodwin L, Lucas S, Copeland A, Lapidus A, Glavina del Rio T, Tice H, Saunders E, Brettin T, Detter JC, Han CS, Pitluck S, Land ML, Hauser LJ, Kyrpides N, Mikhailova N, He Z, Wu L, Van Nostrand JD, Henrissat B, He Q, Lawson PA, Tanner RS, Lynd LR, Wiegel J, Fields MW, Arkin AP, Schadt CW, Stevenson BS, McInerney MJ, Yang Y, Dong H, Xing D, Ren N, Wang A, Huhnke RL, Mielenz JR, Ding SY, Himmel ME, Taghavi S, van der Lelie D, Rubin EM, Zhou J (2010) Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. J Bacteriol 192:6494–6496

    PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    PubMed  Google Scholar 

  • Henrissat B, Coutinho PM (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol 330:183–201

    PubMed  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    PubMed  CAS  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon J-P, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094

    PubMed  CAS  Google Scholar 

  • Henrissat B, Teeri TT, Warren RAJ (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425:352–354

    PubMed  CAS  Google Scholar 

  • Henrissat B, Coutinho PM, Deleury E, Davies GJ (2003) Sequence families and modular organisation of carbohydrate-active enzymes. In: Svendsen A (ed) Enzyme functionality: design, engineering and screening. Marcel Dekker, New York, pp 15–34

    Google Scholar 

  • Higuchi T (1990) Lignin biochemistry, biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    CAS  Google Scholar 

  • Hilden L, Eng L, Johansson G, Lindqvist SE, Pettersson G (2001) An amperometric cellobiose dehydrogenase-based biosensor can be used for measurement of cellulase activity. Anal Biochem 290(2):245–250

    PubMed  CAS  Google Scholar 

  • Himmel ME (ed) (2008) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Wiley, Inc

    Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10(4):358–364

    PubMed  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807; Erratum: 316, 982

    Google Scholar 

  • Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341

    CAS  Google Scholar 

  • Hurlbert JC, Preston III JF (2001) Functional characterization of a novel xylanase from corn strain of Erwinia chrysanthemi. J Bacteriol 183:2093–2100

    Google Scholar 

  • Irwin D, Walker L, Spezio M, Wilson D (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013

    PubMed  CAS  Google Scholar 

  • Irwin D, Shin D-H, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714

    PubMed  CAS  Google Scholar 

  • Johnson EA, Sakojoh M, Halliwell G, Madia A, Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 43:1125–1132

    PubMed  CAS  Google Scholar 

  • Johnson P, Joshi M, Tomme P, Kilburn D, McIntosh L (1996) Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi Cen C determined by nuclear magnetic resonance spectroscopy. Biochemistry 35:14381–14394

    PubMed  CAS  Google Scholar 

  • Jung KH, Lee KM, Kim H, Yoon KH, Park SH, Pack MY (1998) Cloning and expression of a Clostridium thermocellum xylanase gene in Escherichia coli. Biochem Mol Biol Int 44(2):283–292

    PubMed  CAS  Google Scholar 

  • Juy M, Amit AG, Alzari PM, Poljak RJ, Claeyssens M, Béguin P, Aubert J-P (1992) Crystal structure of a thermostable bacterial cellulose-degrading enzyme. Nature 357:39–41

    Google Scholar 

  • Kahel-Raifer H, Jindou S, Bahari L, Nataf Y, Shoham Y, Bayer EA, Borovok I, Lamed R (2010) The unique set of putative membrane-associated anti-σ factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol Lett 308:84–93

    PubMed  CAS  Google Scholar 

  • Kang S, Barak Y, Lamed R, Bayer EA, Morrison M (2006) The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors. Mol Microbiol 60:1344–1354

    PubMed  CAS  Google Scholar 

  • Karita S, Sakka K, Ohmiya K (1997) Cellulosomes, cellulase complexes, of anaerobic microbes: their structure models and functions. In: Onodera R, Itabashi H, Ushida K, Yano H, Sasaki Y (eds) Rumen microbes and digestive physiology in ruminants, vol 14. Japan Sci. Soc. Press, Tokyo/S.Karger, Basel, pp 47–57

    Google Scholar 

  • Kataeva I, Li X-L, Chen H, Choi SK, Ljungdahl LG (1999a) Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of clostridium thermocellum: evidence for gene duplication and recombination. J Bacteriol 181:5288–5295

    PubMed  CAS  Google Scholar 

  • Kataeva I, Li X-L, Chen H, Ljungdahl LG (1999b) CelK—a new cellobiohydrolase from clostridium thermocellum cellulosome: role of N-terminal cellulose-binding domain. In: Ohmiya K, Hayashi K, Sakka K, Kobayashi Y, Karita S, Kimura T (eds) Genetics, biochemistry and ecology of cellulose degradation. Uni Publishers, Tokyo, pp 454–460

    Google Scholar 

  • Kataeva IA, Seidel RD III, Shah A, West LT, Li X-L, Ljungdahl LG (2002) The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol 68:4292–4300

    PubMed  CAS  Google Scholar 

  • Kataeva IA, Uversky VN, Ljungdahl LG (2003) Calcium and domain interactions contribute to the thermostability of domains of the multimodular cellobiohydrolase, CbhA, a subunit of the Clostridium thermocellum cellulosome. Biochem J 372:151–161

    PubMed  CAS  Google Scholar 

  • Kataeva IA, Uversky VN, Brewer JM, Schubot F, Rose JP, Wang BC, Ljungdahl LG (2004) Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Eng Des Sel 17:759–769

    PubMed  CAS  Google Scholar 

  • Kataeva IA, Brewer JM, Uversky VN, Ljungdahl LG (2005) Domain coupling in a multimodular cellobiohydrolase CbhA from Clostridium thermocellum. FEBS Lett 579:4367–4373

    PubMed  CAS  Google Scholar 

  • Kataeva IA, Yang SJ, Dam P, Poole FL, Yin Y, Zhou F, Chou WC, Xu Y, Goodwin L, Sims DR, Detter JC, Hauser LJ, Westpheling J, Adams MW (2009) Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J Bacteriol 191:3760–3761

    PubMed  CAS  Google Scholar 

  • Kidby DK, Davidson DJ (1973) A convenient ferricyanide estimation of reducing sugars in the nanomole range. Anal Biochem 55(1):321–325

    PubMed  CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2011) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    PubMed  Google Scholar 

  • Kondo S, Yamagishi A, Oshima T (1991) Positive selection for uracil auxotrophs of the sulfur-dependent thermophilic archaebacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid. J Bacteriol 173:7698–7700

    PubMed  CAS  Google Scholar 

  • Kosugi A, Murashima K, Doi RH (2002) Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J Bacteriol 184:6859–6865

    PubMed  CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095

    PubMed  CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson K-E (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    PubMed  CAS  Google Scholar 

  • Lamed R, Bayer EA (1988a) The cellulosome concept: exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis. In: Aubert J-P, Beguin P, Millet J (eds) Biochemistry and genetics of cellulose degradation. Academic, London, pp 101–116

    Google Scholar 

  • Lamed R, Bayer EA (1988b) The cellulosome of Clostridium thermocellum. Adv Appl Microbiol 33:1–46

    Google Scholar 

  • Lamed R, Bayer EA (1991) Cellulose degradation by thermophilic anaerobic bacteria. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose and cellulose materials. Marcel Dekker, New York, pp 377–410

    Google Scholar 

  • Lamed R, Bayer EA (1993) The cellulosome concept—a decade later! In: Shimada K, Hoshino S, Ohmiya K, Sakka K, Kobayashi Y, Karita S (eds) Genetics, biochemistry and ecology of lignocellulose degradation. Uni Publishers, Tokyo, Japan, pp 1–12

    Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983a) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    PubMed  CAS  Google Scholar 

  • Lamed R, Setter E, Kenig R, Bayer EA (1983b) The cellulosome—a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13:163–181

    CAS  Google Scholar 

  • Lamed E, Naimark J, Morgenstern E, Bayer EA (1987a) Scanning electron microscopic delineation of bacterial surface topology using cationized ferritin. J Microbiol Methods 7:233–240

    Google Scholar 

  • Lamed R, Naimark J, Morgenstern E, Bayer EA (1987b) Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169:3792–3800

    PubMed  CAS  Google Scholar 

  • Laurie JI, Clarke JH, Ciruela A, Faulds CB, Williamson G, Gilbert HJ, Rixon JE, Millward-Sadler J, Hazlewood GP (1997) The NodB domain of a multidomain xylanase from Cellulomonas fimi deacylates acetylxylan. FEMS Microbiol Lett 148:261–264

    CAS  Google Scholar 

  • Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    PubMed  CAS  Google Scholar 

  • Leibovitz E, Béguin P (1996) A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 178:3077–3084

    PubMed  CAS  Google Scholar 

  • Leibovitz E, Ohayon H, Gounon P, Béguin P (1997) Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA. J Bacteriol 179:2519–2523

    PubMed  CAS  Google Scholar 

  • Lemaire M, Ohayon H, Gounon P, Fujino T, Béguin P (1995) OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol 177:2451–2459

    PubMed  CAS  Google Scholar 

  • Lemaire M, Miras I, Gounon P, Béguin P (1998) Identification of a region responsible for binding to the cell wall within the S-layer protein of Clostridium thermocellum. Microbiology 144:211–217

    PubMed  CAS  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    PubMed  CAS  Google Scholar 

  • Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 18:2–10

    Google Scholar 

  • Lin C, Urbance JW, Stahl DA (1994) Acetivibrio cellulolyticus and Bacteroides cellulosolvens are members of the greater clostridial assemblage. FEMS Microbiol Lett 124:151–155

    PubMed  CAS  Google Scholar 

  • Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57:15–28

    CAS  Google Scholar 

  • Liu CC, Doi RH (1998) Properties of exgS, a gene for a major subunit of the Clostridium cellulovorans cellulosome. Gene 211:39–47

    PubMed  CAS  Google Scholar 

  • Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. Adv Microb Ecol 8:237–299

    CAS  Google Scholar 

  • Lu Y, Zhang YH, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA 103:16165–16169

    PubMed  CAS  Google Scholar 

  • Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W (1994) Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol 176:1224–1233

    PubMed  CAS  Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522

    PubMed  CAS  Google Scholar 

  • Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486

    PubMed  CAS  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323

    PubMed  CAS  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    PubMed  CAS  Google Scholar 

  • Lytle B, Volkman BF, Westler WM, Wu JHD (2000) Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch Biochem Biophys 379:237–244

    PubMed  CAS  Google Scholar 

  • Lytle BL, Volkman BF, Westler WM, Heckman MP, Wu JH (2001) Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. J Mol Biol 307(3):745–753

    PubMed  CAS  Google Scholar 

  • Marais JP, De Wit JL, Quicke GV (1966) A critical examination of the Nelson-Somogyi method for the determination of reducing sugars. Anal Biochem 15(3):373–381

    PubMed  CAS  Google Scholar 

  • Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285:751–753

    PubMed  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Ibeta. Carbohydr Res 341:138–152

    PubMed  CAS  Google Scholar 

  • Mattinen M-L, Kontteli M, Kerovuo J, Linder M, Annila A, Lindeberg G, Reinikainen T, Drakenberg T (1997) Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei. Protein Sci 6:294–303

    PubMed  CAS  Google Scholar 

  • Matuschek M, Sahm K, Zibat A, Bahl H (1996) Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol Gen Genet 252(4):493–496

    PubMed  CAS  Google Scholar 

  • Mayer F, Coughlan MP, Mori Y, Ljungdahl LG (1987) Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl Environ Microbiol 53:2785–2792

    PubMed  CAS  Google Scholar 

  • McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    PubMed  CAS  Google Scholar 

  • Mechaly A, Yaron S, Lamed R, Fierobe H-P, Belaich A, Belaich J-P, Shoham Y, Bayer EA (2000) Cohesin-dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 39:170–177

    PubMed  CAS  Google Scholar 

  • Mechaly A, Fierobe H-P, Belaich A, Belaich J-P, Lamed R, Shoham Y, Bayer EA (2001) Cohesin-dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between non-recognition and high-affinity recognition. J Biol Chem 276:9883–9888

    PubMed  CAS  Google Scholar 

  • Medie FM, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10:227–234

    CAS  Google Scholar 

  • Meguro H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M (2011) Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans based on gene expression and measurement of activities. J Bacteriol 193:5527–5530

    PubMed  CAS  Google Scholar 

  • Miller GLR, Blum WE, Burton AL (1960) Measurements of carboxymethylcellulase activity. Anal Biochem 2:127–132

    Google Scholar 

  • Mishara S, Beguin P, Aubert J-P (1991) Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J Bacteriol 173:80–85

    Google Scholar 

  • Mitchell WF (1998) Physiology of carbohydrate to solvent conversion by Clostridia. Adv Microbiol Physiol 39:31–130

    CAS  Google Scholar 

  • Mohand-Oussaid O, Payot S, Guedon E, Gelhaye E, Youyou A, Petitdemange H (1999) The extracellular xylan degradative system in clostridium cellulolyticum cultivated on xylan: evidence for cell-free cellulosome production. J Bacteriol 181:4035–4040

    PubMed  CAS  Google Scholar 

  • Montanier C, van Bueren AL, Dumon C, Flint JE, Correia MA, Prates JA, Firbank SJ, Lewis RJ, Grondin GG, Ghinet MG, Gloster TM, Herve C, Knox JP, Talbot BG, Turkenburg JP, Kerovuo J, Brzezinski R, Fontes CM, Davies GJ, Boraston AB, Gilbert HJ (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci USA 106:3065–3070

    PubMed  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    PubMed  CAS  Google Scholar 

  • Morag E, Bayer EA, Lamed R (1990) Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J Bacteriol 172:6098–6105

    PubMed  CAS  Google Scholar 

  • Morag E, Halevy I, Bayer EA, Lamed R (1991) Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J Bacteriol 173:4155–4162

    PubMed  CAS  Google Scholar 

  • Morag E, Bayer EA, Hazlewood GP, Gilbert HJ, Lamed R (1993) Cellulase SS (CelS) is synonymous with the major cellobiohydrolase (subunit S8) from the cellulosome of Clostridium thermocellum. Appl Biochem Biotechnol 43:147–151

    PubMed  CAS  Google Scholar 

  • Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y (1995) Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980–1986

    PubMed  CAS  Google Scholar 

  • Morrison M, Daugherty SC, Nelson WC, Davidsen T, Nelson KE (2010) The FibRumBa database: a resource for biologists with interests in gastrointestinal microbial ecology, plant biomass degradation, and anaerobic microbiology. Microb Ecol 59:212–213

    PubMed  Google Scholar 

  • Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010b) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci USA 107:18646–18651

    PubMed  CAS  Google Scholar 

  • Navarro A, Chebrou M-C, Béguin P, Aubert J-P (1991) Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum. Res Microbiol 142:927–936

    PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    PubMed  CAS  Google Scholar 

  • Newcomb M, Wu JHD (2004) Transcriptional regulators of the Clostridium thermocellum cellulase system. In: Ohmiya K, Sakka K, Karita S, Kimura T, Onishi Y (eds) Biotechnology of lignocellulose degradation and biomass utilization. Uni Publisher, Tokyo, pp 148–154

    Google Scholar 

  • Newcomb M, Millen J, Chen CY, Wu JH (2011) Co-transcription of the celC gene cluster in Clostridium thermocellum. Appl Microbiol Biotechnol 90:625–634

    PubMed  CAS  Google Scholar 

  • Ni J, Takehara M, Watanabe H (2005) Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs. Biosci Biotechnol Biochem 69:1711–1720

    PubMed  CAS  Google Scholar 

  • Noach I, Lamed R, Xu Q, Rosenheck S, Shimon LJW, Kenig R, Bayer EA, Frolow F (2003) Preliminary X-ray characterization and phasing of a type II cohesin domain from the cellulosome of Acetivibrio cellulolyticus. Acta Crystallogr Sect D Biol Struct D59:1670–1673

    CAS  Google Scholar 

  • Noach I, Frolow F, Jakoby H, Rosenheck S, Shimon LJW, Lamed R, Bayer EA (2005) Crystal structure of a type-II cohesin module from the Bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. J Mol Biol 348:1–12

    PubMed  CAS  Google Scholar 

  • Noach IO, Alber EA, Bayer R, Lamed M, Levy-Assaraf LJ, Shimon W, and Frolow F, (2008) Crystallization and preliminary X-ray analysis of Acetivibrio cellulolyticus cellulosomal type II cohesin module: Two versions having different linker lengths. Acta Cryst. F64: 58–61

    CAS  Google Scholar 

  • Noach I, Frolow F, Alber O, Lamed R, Shimon LJW, Bayer EA (2009) Inter-modular linker flexibility revealed from crystal structures of adjacent cellulosomal cohesins of Acetivibrio cellulolyticus. J Mol Biol 391:86–97

    PubMed  CAS  Google Scholar 

  • Noach I, Levy-Assaraf M, Lamed R, Shimon L, Frolow F, Bayer EA (2010) Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol 399:294–305

    PubMed  CAS  Google Scholar 

  • Nochur SV, Demain AL, Roberts MF (1990) Mutation of Clostridium thermocellum in the presence of certain carbon sources. FEMS Microbiol Lett 71:199–204

    CAS  Google Scholar 

  • Nochur SV, Demain AL, Roberts MF (1992a) Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb Technol 14:338–349

    CAS  Google Scholar 

  • Nochur SV, Jacobson GR, Roberts MF, Demain AL (1992b) Mode of sugar phosphorylation in Clostridium thermocellum. Appl Biochem Biotechnol 33:33–41

    CAS  Google Scholar 

  • Nochur SV, Roberts MF, Demain AL (1993) True cellulase production by Clostridium thermocellum grown on different carbon sources. Biotechnol Lett 15:641–646

    CAS  Google Scholar 

  • Nordon RE, Craig SJ, Foong FC (2009) Molecular engineering of the cellulosome complex for affinity and bioenergy applications. Biotechnol Lett 31:465–476

    PubMed  CAS  Google Scholar 

  • Notenboom V, Birsan C, Warren R, Withers S, Rose D (1998) Exploring the cellulose/xylan specificity of the β-1,4-glycanase Cex from Cellulomonas fimi through crystallography and mutation. Biochemistry 37:4751–4758

    PubMed  CAS  Google Scholar 

  • Ohmiya K, Sakka K, Karita S, Kimura T (1997) Structure of cellulases and their applications. Biotechnol Genet Eng Rev 14:365–414

    PubMed  CAS  Google Scholar 

  • Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR (2010) Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci USA 107:17727–17732

    PubMed  CAS  Google Scholar 

  • O'Neill G, Goh SH, Warren RA, Kilburn DG, Miller RC (1986) Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44(2–3):325–330

    PubMed  Google Scholar 

  • O'Neill RA, Darvill A, Albersheim P (1989) A fluorescence assay for enzymes that cleave glycosidic linkages to produce reducing sugars. Anal Biochem 177(1):11–15

    PubMed  Google Scholar 

  • O'Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Google Scholar 

  • Ozdemir I, Blumer-Schuette SE, Kelly RM (2012) S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 78:768–777

    PubMed  CAS  Google Scholar 

  • Pagès S, Belaich A, Belaich J-P, Morag E, Lamed R, Shoham Y, Bayer EA (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29:517–527

    PubMed  Google Scholar 

  • Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaich JP, Driguez H, Haser R (1998) The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. EMBO J 17:5551–5562

    PubMed  CAS  Google Scholar 

  • Peer A, Smith SP, Bayer EA, Lamed R, Borovok I (2009) Non-cellulosomal cohesin and dockerin-like modules in the three domains of life. FEMS Microbiol Lett 291:1–16

    PubMed  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproduct industry: the technical feasibility of a billion-ton annual supply. A joint study sponsored by the U.S. Department of Energy and the U.S. Department of Agriculture. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Petkun S, Jindou S, Shimon LJW, Rosenheck S, Bayer EA, Lamed R, Frolow F (2010) Structure of a family 3b' carbohydrate-binding module from the Cel9V glycoside hydrolase from Clostridium thermocellum. Structural diversity and implications for carbohydrate binding. Acta Cryst D66:33–43

    CAS  Google Scholar 

  • Pinheiro BA, Proctor MR, Martinez-Fleites CC, Prates JAM, Money VA, Davies GJ, Bayer EA, Fontes CMGA, Fierobe H-P, Gilbert HJ (2008) The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J Biol Chem 283:18422–18430

    PubMed  CAS  Google Scholar 

  • Poole DM, Morag E, Lamed R, Bayer EA, Hazlewood GP, Gilbert HJ (1992) Identification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellum. FEMS Microbiol Lett 99:181–186

    CAS  Google Scholar 

  • Puls J, Schuseil J (1993) Chemistry of hemicellulases: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London, pp 1–27

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    PubMed  CAS  Google Scholar 

  • Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4:e5271

    PubMed  Google Scholar 

  • Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR (2011) Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 11:134

    PubMed  CAS  Google Scholar 

  • Reese RT (1976) History of the cellulase program at the U.S. Army Natick Development Center. Biotechnol Bioeng Symp 6:9–20

    PubMed  CAS  Google Scholar 

  • Reeves RA, Gibbs MD, Morris DD, Griffiths KR, Saul DJ, Bergquist PL (2000) Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1. Appl Environ Microbiol 66(4):1532–1537

    Google Scholar 

  • Reverbel-Leroy C, Pagés S, Belaich A, Belaich J-P, Tardif C (1997) The processive endocellulase CelF, a major component of the clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179:46–52

    PubMed  CAS  Google Scholar 

  • Ridley BL, O'Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    PubMed  CAS  Google Scholar 

  • Riederer A, Takasuka TE, Makino S, Stevenson DM, Bukhman YV, Elsen NL, Fox BG (2011) Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 77:1243–1253

    PubMed  CAS  Google Scholar 

  • Rincon MT, Ding S-Y, McCrae SI, Martin JC, Aurilia V, Lamed R, Shoham Y, Bayer EA, Flint HJ (2003) Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J Bacteriol 185:703–713

    PubMed  CAS  Google Scholar 

  • Rincon MT, Martin JC, Aurilia V, McCrae SI, Rucklidge G, Reid M, Bayer EA, Lamed R, Flint HJ (2004) ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J Bacteriol 186:2576–2585

    PubMed  CAS  Google Scholar 

  • Rincon MT, Cepeljnik T, Martin JC, Lamed R, Barak Y, Bayer EA, Flint HJ (2005) Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J Bacteriol 187:7569–7578

    PubMed  CAS  Google Scholar 

  • Rincon MT, Cepeljnik T, Martin JC, Barak Y, Lamed R, Bayer EA, Flint HJ (2007) A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens. J Bacteriol 189:4774–7283

    PubMed  CAS  Google Scholar 

  • Rincon MT, Dassa B, Flint HJ, Travis AR, Jindou S, Borovok I, Lamed R, Bayer EA, Henrissat B, Coutinho PM, Antonopoulos DA, Berg ME, White BA (2010) Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD1. PLoS One 5:e12476

    PubMed  Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T, Knowles JKC, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 279:380–386

    Google Scholar 

  • Rydlund A, Dahlman O (1997) Oligosaccharides obtained by enzymatic hydrolysis of birch kraft pulp xylan: analysis by capillary zone electrophoresis and mass spectrometry. Carbohydr Res 300:95–102

    PubMed  CAS  Google Scholar 

  • Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    PubMed  CAS  Google Scholar 

  • Sakon J, Irwin D, Wilson DB, Karplus PA (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–818

    PubMed  CAS  Google Scholar 

  • Salamitou S, Lemaire M, Fujino T, Ohayon H, Gounon P, Béguin P, Aubert J-P (1994a) Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. J Bacteriol 176:2828–2834

    PubMed  CAS  Google Scholar 

  • Salamitou S, Raynaud O, Lemaire M, Coughlan M, Béguin P, Aubert J-P (1994b) Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J Bacteriol 176:2822–2827

    PubMed  CAS  Google Scholar 

  • Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR, Bergquist PL (1990) celB, a gene coding for a bifunctional cellulase from the extreme thermophile “Caldocellum saccharolyticum”. Appl Environ Microbiol 56(10):3117–3124

    PubMed  CAS  Google Scholar 

  • Schirner K, Errington J (2009) The cell wall regulator {sigma}I specifically suppresses the lethal phenotype of mbl mutants in Bacillus subtilis. J Bacteriol 191:1404–1413

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    PubMed  CAS  Google Scholar 

  • Schneider JC, Jenings AF, Mun DM, McGovern PM, Chew LC (2005) Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonas fluorescens fermentation. Biotechnol Prog 21:343–348

    PubMed  CAS  Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777–784

    PubMed  CAS  Google Scholar 

  • Schülein M (1997) Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57:71–81

    PubMed  Google Scholar 

  • Schwarz WH, Zverlov VV (2006) Protease inhibitors in bacteria: an emerging concept for the regulation of bacterial protein complexes? Mol Microbiol 60:1323–1326

    PubMed  CAS  Google Scholar 

  • Sheehan JJ (2009) Biofuels and the conundrum of sustainability. Curr Opin Biotechnol 20:318–324

    PubMed  CAS  Google Scholar 

  • Shen H, Meinke A, Tomme P, Damude HG, Kwan E, Kilburn DG, Miller RC Jr, Warren RAJ, Gilkes NR (1995) Cellulomonas fimi cellobiohydrolases. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble polysaccharides. American Chemical Society, Washington, DC, pp 174–196

    Google Scholar 

  • Shimon LJW, Bayer EA, Morag E, Lamed R, Yaron S, Shoham Y, Frolow F (1997) The crystal structure at 2.15 Å resolution of a cohesin domain of the cellulosome from Clostridium thermocellum. Structure 5:381–390

    PubMed  CAS  Google Scholar 

  • Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281

    PubMed  CAS  Google Scholar 

  • Shoseyov O, Takagi M, Goldstein MA, Doi RH (1992) Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci USA 89:3483–3487

    PubMed  CAS  Google Scholar 

  • Simpson HD, Barras F (1999) Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase. J Bacteriol 181(15):4611–4616

    PubMed  CAS  Google Scholar 

  • Simpson PJ, Bolam DN, Cooper A, Ciruela A, Hazlewood GP, Gilbert HJ, Williamson MP (1999) A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure Fold Des 7:853–864

    PubMed  CAS  Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    CAS  Google Scholar 

  • Sleat R, Mah RA, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans, sp. nov. Appl Environ Microbiol 48:88–93

    PubMed  CAS  Google Scholar 

  • Sonenshein AL (2007) Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5:917–927

    PubMed  CAS  Google Scholar 

  • Spinelli S, Fierobe HP, Belaich A, Belaich JP, Henrissat B, Cambillau C (2000) Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. J Mol Biol 304(2):189–200

    PubMed  CAS  Google Scholar 

  • Srisodsuk M, Kleman-Leyer K, Keranen S, Kirk TK, Teeri TT (1998) Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. Eur J Biochem 251(3):885–892

    PubMed  CAS  Google Scholar 

  • Stevenson DM, Weimer PJ (2005) Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl Environ Microbiol 71:4672–4678

    PubMed  CAS  Google Scholar 

  • Stutzenberger F (1990) Bacterial cellulases. In: Fogarty WM, Kelly CT (eds) Microbial enzymes and biotechnology. Elsevier Applied Science, London/New York, pp 37–70

    Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study of the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    CAS  Google Scholar 

  • Tamaru Y, Doi RH (1999) Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE. J Bacteriol 181:3270–3276

    PubMed  CAS  Google Scholar 

  • Tamaru Y, Doi RH (2000) The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal ManA. J Bacteriol 182:244–247

    PubMed  CAS  Google Scholar 

  • Tamaru Y, RH Doi (2001) Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome. Proc Natl Acad Sci USA 20: 20

    Google Scholar 

  • Tamaru Y, Liu C-C, Ichi-ishi A, Malburg L, Doi RH (1999) The Clostridium cellulovorans cellulosome and non-cellulosomal cellulases. In: Ohmiya K, Hayashi K, Sakka K, Kobayashi Y, Karita S, Kimura T (eds) Genetics, biochemistry and ecology of cellulose degradation. Uni Publishers, Tokyo, pp 488–494

    Google Scholar 

  • Tamaru Y, Karita S, Ibrahim A, Chan H, Doi RH (2000) A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol 182(20):5906–5910

    PubMed  CAS  Google Scholar 

  • Tamaru Y, H Miyake, K Kuroda, A Nakanishi, Y Kawade, K Yamamoto, M Uemura, Y Fujita, RH Doi, M Ueda (2010) Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B. J Bacteriol 192: 901–902

    Google Scholar 

  • Tavares GA, Béguin P, Alzari PM (1997) The crystal structure of a type I cohesin domain at 1.7 Å resolution. J Mol Biol 273:701–713

    PubMed  CAS  Google Scholar 

  • Taylor LE 2nd, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861

    PubMed  CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Google Scholar 

  • Teeri TT, Reinikainen T, Ruohonen L, Jones TA, Knowles JKC (1992) Domain function in Trichoderma reesei cellulases. J Biotechnol 24:169–176

    CAS  Google Scholar 

  • Te'o VS, Saul DJ, Bergquist PL (1995) CelA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296

    PubMed  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    CAS  Google Scholar 

  • Tokatlidis K, Salamitou S, Béguin P, Dhurjati P, Aubert J-P (1991) Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett 291:185–188

    PubMed  CAS  Google Scholar 

  • Tokatlidis K, Dhurjati P, Béguin P (1993) Properties conferred on Clostridium thermocellum endoglucanase CelC by grafting the duplicated segment of endoglucanase CelD. Protein Eng 6(8):947–952

    PubMed  CAS  Google Scholar 

  • Tomme P, Warren RAJ, Gilkes NR (1995a) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    PubMed  CAS  Google Scholar 

  • Tomme P, Warren RAJ, Miller RC, Kilburn DG, Gilkes NR (1995b) Cellulose-binding domains—Classification and properties. In: Saddler JM, Penner MH (eds) Enzymatic degradation of insoluble polysaccharides. American Chemical Society, Washington, D.C., pp 142–161

    Google Scholar 

  • Tomme P, Creagh AL, Kilburn DG, Haynes CA (1996) Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. Biochemistry 35:13885–13894

    PubMed  CAS  Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    PubMed  CAS  Google Scholar 

  • Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599

    PubMed  CAS  Google Scholar 

  • Tull D, Withers SG (1994) Mechanisms of cellulases and xylanases: a detailed kinetic study of the exo-β-1,4-glycanase from Cellulomonas fimi. Biochemistry 33(20):6363–6370

    PubMed  CAS  Google Scholar 

  • van Tilbeurgh H, G Pettersson, R Bhikabhai, H De Boeck, M Claeyssens (1985) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1,4-β-glucan cellobiohydrolase II. Eur J Biochem 148(2):329–334

    Google Scholar 

  • Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA (2010) Interplay between Clostridium thermocellum family-48 and family-9 cellulases in the cellulosomal versus non-cellulosomal states. Appl Environ Microbiol 76:3236–3243

    PubMed  CAS  Google Scholar 

  • Viikari L, and Teeri T, Eds. (1997) Biochemistry and genetics of cellulases and hemicellulases and their application. J. Biotechnol. 57: 1–228

    Google Scholar 

  • Vlasenko EY, Ryan AI, Shoemaker CF, Shoemaker SP (1998) The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-β-D-glucanases on carboxymethylcellulose: a comparative evaluation of three methods. Enzyme Microb Technol 23:350–359

    CAS  Google Scholar 

  • Voronov-Goldman M, Noach I, Lamed R, Shimon LJW, Borovok I, Bayer EA, Frolow F (2009) Crystallization and preliminary X-ray analysis of a cohesin-like module from ORF 2375 of the archaeon Archaeoglobus fulgidus. Acta Cryst F65:275–278

    CAS  Google Scholar 

  • Waffenschmidt S, Jaenicke L (1987) Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate. Anal Biochem 165:337–340

    PubMed  CAS  Google Scholar 

  • Wall JD, Harwood CS, Demain A (eds) (2008) Bioenergy. ASM Press, Washington, DC

    Google Scholar 

  • Wang WK, Kruus K, Wu JHD (1993) Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase SS (CelS), a major cellulosome component. J Bacteriol 175:1293–1302

    PubMed  CAS  Google Scholar 

  • Wang WK, Kruus K, Wu JHD (1994) Cloning and expression of the Clostridium thermocellum cellulase celS gene in Escherichia coli. Appl Microbiol Biotechnol 42:346–352

    PubMed  CAS  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    PubMed  CAS  Google Scholar 

  • Warren RAJ (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    PubMed  CAS  Google Scholar 

  • Watson BJ, Zhang H, Longmire AG, Moon YH, Hutchenson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705

    PubMed  CAS  Google Scholar 

  • Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40. PLoS Genet 4:e1000087

    PubMed  Google Scholar 

  • White A, Rose DR (1997) Mechanism of catalysis by retaining β-glycosyl hydrolases. Curr Opin Struct Biol 7:645–651

    PubMed  CAS  Google Scholar 

  • Whittle DJ, Kilburn DG, Warren RA, Miller RC (1982) Molecular cloning of a Cellulomonas fimi cellulose gene in Escherichia coli. Gene 17(2):139–145

    PubMed  CAS  Google Scholar 

  • Williams SJ, Withers SG (2000) Glycosyl fluorides in enzymatic reactions. Carbohydr Res 327:27–46

    PubMed  CAS  Google Scholar 

  • Williamson MP, Simpson PJ, Bolam DN, Hazlewood GP, Ciruela A, Cooper A, Gilbert HJ (1999) How the N-terminal xylan-binding domain from C. fimi xylanase D recognises xylan. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 212–220

    Google Scholar 

  • Wilson DB (1992) Biochemistry and genetics of actinomycete cellulases. Crit Rev Biotechnol 12:45–63

    PubMed  CAS  Google Scholar 

  • Wilson DB (2004) Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 4:72–82

    PubMed  CAS  Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297

    PubMed  CAS  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    PubMed  CAS  Google Scholar 

  • Wilson DB, Irwin DC (1999) Genetics and properties of cellulases. Adv Biochem Eng 65:1–21

    CAS  Google Scholar 

  • Withers SG (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydr Res 44:325–337

    CAS  Google Scholar 

  • Withers SG, Aebersold R (1995) Approaches to labeling and identification of active site residues in glycosidases. Protein Sci 4(3):361–372

    PubMed  CAS  Google Scholar 

  • Wood WA, Kellogg ST (eds) (1988) Biomass (Part A: cellulose and hemicellulose), vol 160. Academic, San Diego

    Google Scholar 

  • Wu JHD, Orme-Johnson WH, Demain AL (1988) Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27:1703–1709

    CAS  Google Scholar 

  • Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546

    PubMed  CAS  Google Scholar 

  • Xu Q, Morrison M, Bayer EA, Atamna N, Lamed R (2004) A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. FEBS Lett 566:11–16

    PubMed  CAS  Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371

    PubMed  CAS  Google Scholar 

  • Yagüe E, Béguin P, Aubert J-P (1990) Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 89:61–67

    PubMed  Google Scholar 

  • Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y (1995) Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 360:121–124

    PubMed  CAS  Google Scholar 

  • Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18

    PubMed  CAS  Google Scholar 

  • Zhang H, Hutcheson SW (2011) Complex expression of the cellulolytic transcriptome of Saccharophagus degradans. Appl Environ Microbiol 77:5591–5596

    PubMed  CAS  Google Scholar 

  • Zhang YH, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106

    PubMed  CAS  Google Scholar 

  • Zou J, Kleywegt GJ, Stahlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, Jones TA (1999) Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure Fold Des 7:1035–1045

    PubMed  CAS  Google Scholar 

  • Zuber U, Drzewiecki K, Hecker M (2001) Putative sigma factor SigI (YkoZ) of Bacillus subtilis is induced by heat shock. J Bacteriol 183:1472–1475

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Laptev DA, Tishkov VI, Velikodvorskaja GA (1991) Nucleotide sequence of the Clostridium thermocellum laminarinase gene. Biochem Biophys Res Commun 181:507–512

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Liebl W, Bachleitner M, Schwarz WH (1998a) Nucleotide sequence of arfB of Clostridium stercorarium, and prediction of catalytic residues of α-L-arabinofuranosidases based on local similarity with several families of glycosyl hydrolases. FEMS Microbiol Lett 164:337–343

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Mahr S, Riedel K, Bronnenmeier K (1998b) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Velikodvorskaya GV, Schwarz WH, Bronnenmeier K, Kellermann J, Staudenbauer WL (1998c) Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J Bacteriol 180:3091–3099

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Velikodvorskaya GV, Schwarz WH, Kellermann J, Staudenbauer WL (1999) Duplicated Clostridium thermocellum cellobiohydrolase gene encoding cellulosomal subunits S3 and S5. Appl Microbiol Biotechnol 51:852–859

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Volkov IY, Velikodvorskaya GA, Schwarz WH (2001) The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in β-glucan binding within family CBM4. Microbiology 147(Pt 3):621–629

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Fuchs K-P, Schwarz WH (2002) Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl Environ Microbiol 68:3176–3179

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Kellermann J, Schwarz WH (2005a) Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5:3646–3653

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Schantz N, Schmitt-Kopplin P, Schwarz WH (2005b) Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D. Microbiology 151:3395–3401

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grants from the Israel Science Foundation (administered by the Israel Academy of Sciences and Humanities, Jerusalem), the US-Israel Binational Foundation (BSF), the Israel Ministry of Science (IMOS), and by the Weizmann Institute of Science Alternative Energy Research Initiative (AERI) are greatly appreciated. The authors are also pleased to acknowledge the establishment of an Israeli Center of Research Excellence (I-CORE) managed by the Israel Science Foundation (grant No 152/11) and additional support by the Technion-Niedersachsen Research Cooperation Program. Y.S. holds the Erwin and Rosl Pollak Chair in Biotechnology at the Technion, E.A.B. is the incumbent of The Maynard I., and Elaine Wishner Chair of Bio-organic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bayer, E.A., Shoham, Y., Lamed, R. (2013). Lignocellulose-Decomposing Bacteria and Their Enzyme Systems. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_67

Download citation

Publish with us

Policies and ethics