Skip to main content

Evolution in Materio

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Evolution in materio refers to the use of computers running search algorithms, called evolutionary algorithms, to find the values of variables that should be applied to material systems so that they carry out useful computation. Examples of such variables might be the location and magnitude of voltages that need to be applied to a particular physical system. Evolution in materio is a methodology for programming materials that utilizes physical effects that the human programmer need not be aware of. It is a general methodology for obtaining analog computation that is specific to the desired problem domain. Although a form of this methodology was hinted at in the work of Gordon Pask in the 1950s, it was not convincingly demonstrated until 1996 by Adrian Thompson, who showed that physical properties of a digital chip could be exploited by computer-controlled evolution. This entry describes the first demonstration that such a method can be used to obtain specific...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Evolution in materio:

The method of applying computer-controlled evolution to manipulate or configure a physical system.

Evolutionary algorithm:

A computer algorithm loosely inspired by Darwinian evolution.

Generate-and-test:

The process of generating a potential solution to a computational problem and testing it to see how good a solution it is. The idea behind it is that no human ingenuity is employed to make good solutions more likely.

Genotype:

A string of information that encodes a potential solution instance of a problem and allows its suitability to be assessed.

Liquid crystal:

Substances that have properties between those of a liquid and a crystal.

Bibliography

Primary Literature

  • Adamatzky A, Costello BDL, Asai T (2005) Reaction-diffusion computers. Elsevier, Amsterdam

    Google Scholar 

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(11):1021–1024

    Article  ADS  Google Scholar 

  • Amos M (2005) Theoretical and experimental DNA computation. Springer, Berlin

    MATH  Google Scholar 

  • Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles – reality, potential and challenges. SPIE Press

    Google Scholar 

  • Bird J, Layzell P (2002) The evolved radio and its implications for modelling the evolution of novel sensors. In: Proceedings of congress on evolutionary computation, pp 1836–1841

    Google Scholar 

  • Bissell C (2004) A great disappearing act: the electronic analogue computer. In: IEEE conference on the history of electronics, pp 28–30

    Google Scholar 

  • Cariani P (1993) To evolve an ear: epistemological implications of gordon pask’s electrochemical devices. Syst Res 3:19–33

    Google Scholar 

  • Chandrasekhar S (1998) Columnar, discotic nematic and lamellar liquid crystals: their structure and physical properties. In: handbook of liquid crystals, vol 2B. Wiley-VCH, pp 749–780

    Google Scholar 

  • Conrad M (1988) The price of programmability. The universal Turing machine. pp 285–307

    Google Scholar 

  • Crooks J (2002) Evolvable analogue hardware. Meng project report, The University of York

    Google Scholar 

  • Crossland WA, Wilkinson TD (1998) Nondisplay applications of liquid crystals. In: Handbook of liquid crystals, vol 1. Wiley-VCH, pp 763–822

    Google Scholar 

  • Demus D, Goodby JW, Gray GW, Spiess HW, Vill V (eds) (1998) Handbook of liquid crystals, vol 4. Wiley-VCH, New York, p 2180

    Google Scholar 

  • Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Hao T (2005) Electrorheological fluids: the non-aqueous suspensions. Elsevier Science, Amsterdam

    Google Scholar 

  • Harding S, Miller JF (2004) Evolution in materio: a tone discriminator in liquid crystal. In: Proceedings of the congress on evolutionary computation 2004 (CEC’2004), vol 2, pp 1800–1807

    Google Scholar 

  • Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD (2001) Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294:1082–1086

    Article  ADS  Google Scholar 

  • Holland J (1992) Adaptation in natural and artificial systems, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Khoo IC (1995) Liquid crystals: physical properties and nonlinear optical phenomena. Wiley, New York

    Google Scholar 

  • Khoo IC, Slussarenko S, Guenther BD, Shih MY, Chen P, Wood WV (1998) Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals. Opt Lett 23(4):253–255

    Article  ADS  Google Scholar 

  • Khusid B, Activos A (1996) Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions. Phys Rev E 54(5):5428–5435

    Article  ADS  Google Scholar 

  • Koza JR (1999) Human-competitive machine intelligence by means of genetic algorithms. In: Booker L, Forrest S, Mitchell M, Riolo R (eds) Festschrift in honor of John H Holland. Center for the Study of Complex Systems, Ann Arbor, pp 15–22

    Google Scholar 

  • Langton C (1991) Computation at the edge of chaos: phase transitions and emergent computation. In: Emergent computation, MIT Press, pp 12–37

    Google Scholar 

  • Laughlin RB, Pines D, Schmalian J, Stojkovic BP, Wolynes P (2000) The middle way. Proc Natl Acad Sci 97(1):32–37

    Article  ADS  Google Scholar 

  • Layzell P (1998) A new research tool for intrinsic hardware evolution. In: Proceedings of the second international conference on evolvable systems: from biology to tardware. Lecture notes in computer science, vol 1478. Springer, Berlin, pp 47–56

    Google Scholar 

  • Linden DS, Altshuler EE (1999) Evolving wire antennas using genetic algorithms: a review. In: 1st NASA//DoD workshop on evolvable hardware. IEEE Computer Society, pp 225–232

    Google Scholar 

  • Linden DS, Altshuler EE (2001) A system for evolving antennas in-situ. In: 3rd NASA//DoD workshop on evolvable hardware. IEEE Computer Society, pp 249–255

    Google Scholar 

  • Lindoy LF, Atkinson IM (2000) Self-assembly in supramolecular systems. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054

    Article  ADS  Google Scholar 

  • Miller JF, Downing K (2002) Evolution in materio: looking beyond the silicon box. In: Proceedings of NASA/DoD evolvable hardware workshop, pp 167–176

    Google Scholar 

  • Mills JW (1995) Polymer processors. Technical report TR580, Department of Computer Science, University of Indiana

    Google Scholar 

  • Mills JW (1995) Programmable vlsi extended analog computer for cyclotron beam control. Technical report TR441, Department of Computer Science, University of Indiana

    Google Scholar 

  • Mills JW (1995) The continuous retina: image processing with a single sensor artificial neural field network. Technical report TR443, Department of Computer Science, University of Indiana

    Google Scholar 

  • Mills JW, Beavers MG, Daffinger CA (1989) Lukasiewicz logic arrays. Technical report TR296, Department of Computer Science, University of Indiana

    Google Scholar 

  • Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge, MA

    Google Scholar 

  • Mortimer RJ (1997) Electrochromic materials. Chem Soc Rev 26:147–156

    Article  Google Scholar 

  • Pask G (1958) Physical analogues to the growth of a concept. In: Mechanization of thought processes. Symposium 10, National Physical Laboratory, pp 765–794

    Google Scholar 

  • Pask G (1959) The natural history of networks. In: Proceedings of international tracts. In: Computer science and technology and their application, vol 2, pp 232–263

    Google Scholar 

  • Petty MC (1996) Langmuir-Blodgett films: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pickering A (2002) Cybernetics and the mangle: Ashby, beer and pask. Soc Stud Sci 32:413–437

    Article  Google Scholar 

  • Pope M, Swenberg CE (1999) Electronic processes of organic crystals and polymers. Oxford University Press, Oxford

    Google Scholar 

  • Stepney S, Braunstein SL, Clark JA, Tyrrell A, Adamatzky A, Smith RE, Addis T, Johnson C, Timmis J, Welch P, Milner R, Partridge D (2005) Journeys in non-classical computation I: a grand challenge for computing research. Int J Parallel Emerg Distrib Syst 20(1):5–19

    Article  MATH  MathSciNet  Google Scholar 

  • Stepney S, Braunstein S, Clark J, Tyrrell A, Adamatzky A, Smith R, Addis T, Johnson C, Timmis J, Welch P, Milner R, Partridge D (2006) Journeys in non-classical computation II: initial journeys and waypoints. Int J Parallel Emerg Distrib Syst 21(2):97–125

    Article  MathSciNet  Google Scholar 

  • Stoica A, Zebulum RS, Keymeulen D (2000) Mixtrinsic evolution. In: Proceedings of the third international conference on evolvable systems: from biology to hardware (ICES2000). Lecture notes in computer science, vol 1801. Springer, Berlin, pp 208–217

    Google Scholar 

  • Stoica A, Zebulum RS, Guo X, Keymeulen D, Ferguson MI, Duong V (2003) Silicon validation of evolution-designed circuits. In: Proceedings. NASA/DoD conference on evolvable hardware, pp 21–25

    Google Scholar 

  • Thompson A (1996) An evolved circuit, intrinsic in silicon, entwined with physics. ICES 390–405

    Google Scholar 

  • Thompson A (1998) On the automatic design of robust electronics through artificial evolution. In: Sipper M, Mange D, PĂ©rez-Uribe A (eds) Evolvable systems: from biology to hardware, vol 1478. Springer, New York, pp 13–24

    Chapter  Google Scholar 

  • Thompson A, Harvey I, Husbands P (1996) Unconstrained evolution and hard consequences. In: Sanchez E, Tomassini M (eds) Towards evolvable hardware: the evolutionary engineering approach. Lecture notes in computer science, vol 1062. Springer, Berlin, pp 136–165

    Chapter  Google Scholar 

  • Toffoli T (2005) Nothing makes sense in computing except in the light of evolution. Int J Unconv Comput 1(1):3–29

    Google Scholar 

  • Turing AM (1936) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc 42(2):230–265

    MathSciNet  Google Scholar 

  • UK Computing Research Committee (2005) Grand challenges in computer research. http://www.ukcrc.org.uk/grand_challenges/

  • Weiss R, Basu S, Hooshangi S, Kalmbach A, Karig D, Mehreja R, Netravali I (2003) Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat Comput 2(1):47–84

    Article  Google Scholar 

  • Wright PV, Chambers B, Barnes A, Lees K, Despotakis A (2000) Progress in smart microwave materials and structures. Smart Mater Struct 9:272–279

    Article  ADS  Google Scholar 

Books and Reviews

  • Analog Computer Museum and History Center. Analog computer reading list. http://dcoward.best.vwh.net/analog/readlist.htm

  • Bringsjord S (2001) In computation, parallel is nothing, physical everything. Minds Mach 11(1):95–99

    Article  MATH  Google Scholar 

  • Feynman RP (2000) Feyman lectures on computation. Perseus Books Group, Reading

    Google Scholar 

  • Fifer S (1961) Analogue computation: theory, techniques, and applications. McGraw-Hill, New York

    Google Scholar 

  • Greenwood GW, Tyrrell AM (2006) Introduction to evolvable hardware: a practical guide for designing self-adaptive systems. Wiley-IEEE Press, Piscataway

    Book  Google Scholar 

  • Hey AJG (ed) (2002) Feynman and computation. Westview Press

    Google Scholar 

  • Penrose R (1989) The emperor’s new mind, concerning computers, minds, and the laws of physics. Oxford University, Oxford

    Google Scholar 

  • Piccinini G. The physical church-turing thesis: modest or bold? http://www.umsl.edu/~piccininig/CTModestorBold5.htm

  • Raichman N, Ben-Jacob N, Segev R (2003) Evolvable hardware: genetic search in a physical realm. Phys A 326:265–285

    Article  MATH  Google Scholar 

  • Sekanina L (2004) Evolvable components: from theory to hardware implementations, 1st edn. Springer, Heidelberg

    Book  Google Scholar 

  • Siegelmann HT (1999) Neural networks and analog computation, beyond the Turing limits. Birkhauser, Boston

    Book  Google Scholar 

  • Sienko T, Adamatzky A, Rambidi N, Conrad M (2003) Molecular computing. MIT Press, Cambridge

    MATH  Google Scholar 

  • Thompson A (1999) Hardware evolution: automatic design of electronic circuits in reconfigurable hardware by artificial evolution, 1st edn. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Harding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Harding, S., Miller, J.F. (2013). Evolution in Materio. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_190-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_190-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics