Skip to main content

Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation

  • Conference paper
Proceedings of the 20th International Meshing Roundtable

Summary

We present a technique to extend any Jacobian based quality measure for linear elements to high-order isoparametric planar triangles of any interpolation degree. The extended quality measure is obtained as the inverse of the distortion of the high-order element with respect to an ideal element. To measure the high-order distortion, we integrate on the curved element the inverse of the Jacobian based quality measure. Thus, we can proof that if the Jacobian based quality is invariant under a particular affine mapping, then the resulting quality measure is also invariant under that mapping. In addition, we check that the quality measure detects non-valid and low-quality high-order elements. Finally, we present and test an approach to generate curved meshes by minimizing the high-order distortion measure of the elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shewchuk, J.: What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (2002) (Preprint)

    Google Scholar 

  2. Dey, S., Shephard, M., Flaherty, J.: Geometry representation issues associated with p-version finite element computations. Comput. Method. Appl. M 150(1–4), 39–55 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dey, S., O’Bara, R., Shephard, M.: Curvilinear mesh generation in 3d. Comput Aided Design 33, 199–209 (2001)

    Article  Google Scholar 

  4. Luo, X., Shephard, M., Remacle, J., O’Bara, R., Beall, M., Szabó, B., Actis, R.: P-version mesh generation issues. In: 11th IMR, Citeseer, pp. 343–354 (2002)

    Google Scholar 

  5. Luo, X., Shephard, M., O’Bara, R., Nastasia, R., Beall, M.: Automatic p-version mesh generation for curved domains. Eng. Comput. 20(3), 273–285 (2004)

    Article  Google Scholar 

  6. Shephard, M., Flaherty, J., Jansen, K., Li, X., Luo, X., Chevaugeon, N., Remacle, J., Beall, M., O’Bara, R.: Adaptive mesh generation for curved domains. Appl. Numer. Math. 52(2-3), 251–271 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Persson, P., Peraire, J.: Curved mesh generation and mesh refinement using lagrangian solid mechanics. In: AIAA Proceedings (2009)

    Google Scholar 

  8. Yuan, K.Y., Huang, Y., Pian, T.: Inverse mapping and distortion measures for quadrilaterals with curved boundaries. Int. J. Numer. Meth. Eng. 37(5), 861–875 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, Z., Tristano, J., Kwok, W.: Combined laplacian and optimization-based smoothing for quadratic mixed surface meshes. In: 12th IMR (2003)

    Google Scholar 

  10. Branets, L., Carey, G.: Extension of a mesh quality metric for elements with a curved boundary edge or surface. J. Comput. Inf. Sci. Eng. 5(4), 302–308 (2005)

    Article  Google Scholar 

  11. Salem, A., Canann, S., Saigal, S.: Robust distortion metric for quadratic triangular 2d finite elements. Appl. Mech. Div. ASME 220, 73–80 (1997)

    Google Scholar 

  12. Salem, A., Canann, S., Saigal, S.: Mid-node admissible spaces for quadratic triangular arbitrarily curved 2d finite elements. Int. J. Numer. Meth. Eng. 50(2), 253–272 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Salem, A., Saigal, S., Canann, S.: Mid-node admissible space for 3d quadratic tetrahedral finite elements. Eng. Comput. 17(1), 39–54 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Knupp, P.: Label-invariant mesh quality metrics. In: 18th IMR (2009)

    Google Scholar 

  15. Mitchell, A., Phillips, G., Wachspress, E.: Forbidden shapes in the finite element method. IMA J. Appl. Math. 8(2), 260 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Field, D.: Algorithms for determining invertible two-and three-dimensional quadratic isoparametric finite element transformations. Int. J. Numer Meth. Eng. 19(6), 789–802 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Baart, M., Mulder, E.: A note on invertible two-dimensional quadratic finite element transformations. Commun. Appl. Numer. M 3(6), 535–539 (1987)

    Article  MATH  Google Scholar 

  18. de la Vallée Poussin, C.: Cours d’analyse infinitésimale, vol. 1. Gauthier-Villars (1921)

    Google Scholar 

  19. Baart, M., McLeod, R.: Quadratic transformations of triangular finite elements in two dimensions. IMA J. Numer. Anal. 6(4), 475 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Frey, A., Hall, C., Porsching, T.: Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations. Math. Comput. 32(143), 725–749 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knupp, P.: A method for hexahedral mesh shape optimization. Int. J. Numer. Meth. Eng. 58(2), 319–332 (2003)

    Article  MATH  Google Scholar 

  22. Escobar, J., Rodríguez, E., Montenegro, R., Montero, G., González-Yuste, J.: Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Method. Appl. M 192(25), 2775–2787 (2003)

    Article  MATH  Google Scholar 

  23. Knupp, P.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–218 (2002)

    Article  MathSciNet  Google Scholar 

  24. Knupp, P.: Algebraic mesh quality metrics for unstructured initial meshes. Finite Elem. Anal. Des. 39(3), 217–241 (2003)

    Article  MATH  Google Scholar 

  25. Wandzurat, S., Xiao, H.: Symmetric quadrature rules on a triangle. Comput. Math. Appl. 45(12), 1829–1840 (2003)

    Article  MathSciNet  Google Scholar 

  26. Roca, X., Ruiz-Gironés, E., Sarrate, J.: ez4u: Mesh generation environment (2010), http://www-lacan.upc.edu/ez4u.htm

  27. Roca, X., Sarrate, J., Ruiz-Gironés, E.: A graphical modeling and mesh generation environment for simulations based on boundary representation data. In: CMNE (2007)

    Google Scholar 

  28. Roca, X.: Paving the path towards automatic hexahedral mesh generation. PhD thesis, Universitat Politècnica de Catalunya (2009)

    Google Scholar 

  29. Huerta, A., Giorgiani, G., Modesto, D.: Adaptive cdg and hdg computations. In: 16th FEF (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roca, X., Gargallo-Peiró, A., Sarrate, J. (2011). Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation. In: Quadros, W.R. (eds) Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24734-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24734-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24733-0

  • Online ISBN: 978-3-642-24734-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics