Skip to main content

46,XX Disorders of Sex Development

  • Chapter
  • First Online:
Disorders of Sex Development

Abstract

46,XX DSD comprise the most common group of genital abnormalities, with congenital adrenal hyperplasia (CAH) being the most important, not only because of its frequency but also because of its life-threatening complications without treatment. The different disorders are described, showing the range of genetic and enzymatic anomalies that lead to excess androgen production causing abnormal virilisation of a female foetus. The non-hormonal anatomical defects of genital development are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann JC, Ito M, Hindmarsh PC et al (1999) A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22(2):125–126

    Article  PubMed  CAS  Google Scholar 

  • Aittomäki K et al (1996) Clinical features of primary ovarian failure caused by a point mutation in the follicle-stimulating hormone receptor gene. J Clin Endocrinol Metab 81(10):3722–3726

    Article  PubMed  Google Scholar 

  • Aksglaede L, Jorgensen N, Skakkebaek NE et al (2009) Low semen volume in 47 adolescents and adults with 47, XXY Klinefelter or 46, XX male syndrome. Int J Androl 32(4):376–384

    Article  PubMed  CAS  Google Scholar 

  • al-Jurayyan NA (1995) Congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency in Saudi Arabia: clinical and biochemical characteristics. Acta Paediatr 84(6):651–654

    Article  PubMed  CAS  Google Scholar 

  • Arakane F, Kallen CB, Watari H et al (1998) Steroidogenic acute regulatory protein (StAR) acts on the outside of mitochondria to stimulate steroidogenesis. Endocr Res 24(3–4):463–468

    Article  PubMed  CAS  Google Scholar 

  • Baker BY, Lin L, Kim CJ et al (2006) Nonclassic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. J Clin Endocrinol Metab 91(12):4781–4785

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner-Parzer SM, Nowotny P, Heinze G et al (2005) Carrier frequency of congenital adrenal hyperplasia (21-hydroxylase deficiency) in a middle European population. J Clin Endocrinol Metab 90(2):775–778

    Article  PubMed  CAS  Google Scholar 

  • Bean EJ, Mazur T, Robinson AD (2009) Mayer-Rokitansky-Kuster-Hauser syndrome: sexuality, psychological effects, and quality of life. J Pediatr Adolesc Gynecol 22(6):339–346

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum SA (2001) Cognitive function in congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 30(1):173–192

    Article  PubMed  CAS  Google Scholar 

  • Biason-Lauber A, Schoenle EJ (2000) Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical insufficiency. Am J Hum Genet 67(6):1563–1568

    Article  PubMed  CAS  Google Scholar 

  • Biason-Lauber A, De Filippo G, Konrad D et al (2007) WNT4 deficiency – a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Human Reprod 22(1):224–229

    Article  CAS  Google Scholar 

  • Bongiovanni AM, Eberlein WR (1956) Plasma and urinary corticosteroids in the hypertensive form of congenital adrenal hyperplasia. J Biol Chem 223(1):85–94

    PubMed  CAS  Google Scholar 

  • Bose HS, Sugawara T, Strauss JF 3rd et al (1996) The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. International Congenital Lipoid Adrenal Hyperplasia Consortium. N Engl J Med 335(25):1870–1878

    Article  PubMed  CAS  Google Scholar 

  • Chung BC, Hu MC, Guzov VM et al (1995) Structure and expression of the CYP21 (P450c21, steroid 21-hydroxylase) gene with respect to its deficiency. Endocr Res 21(1–2):343–352

    Article  PubMed  CAS  Google Scholar 

  • Concolino P, Mello E, Zuppi C et al (2010) Molecular diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency: an update of new CYP21A2 mutations. Clin Chem Lab Med 48(8):1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Costa-Santos M, Kater CE, Auchus RJ (2004) Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab 89(1):49–60

    Article  PubMed  CAS  Google Scholar 

  • Dessens AB, Slijper FME, Drop SLS (2005) Gender dysphoria and gender change in chromosomal females with congenital adrenal hyperplasia. Arch Sex Behav 34(4):389–397

    Article  PubMed  Google Scholar 

  • Finkielstain GP, Chen W, Mehta SP et al (2011) Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 96: E161–E172, Epub 2010 Oct 6

    Article  PubMed  CAS  Google Scholar 

  • Fluck CE, Pandey AV, Huang N et al (2008) P450 oxidoreductase deficiency – a new form of congenital adrenal hyperplasia. Endocr Dev 13:67–81

    Article  PubMed  CAS  Google Scholar 

  • Fujieda K, Tajima T (2005) Molecular basis of adrenal insufficiency. Pediatr Res 57(5 Pt 2):62R–69R

    Article  PubMed  Google Scholar 

  • Fujieda K, Tajima T, Nakae J et al (1997) Spontaneous puberty in 46,XX subjects with congenital lipoid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (StAR) gene. J Clin Invest 99(6):1265–1271

    Article  PubMed  CAS  Google Scholar 

  • Hall CM, Jones JA, Meyer-Bahlburg HFL et al (2004) Behavioral and physical masculinization are related to genotype in girls with congenital adrenal hyperplasia. J Clin Endocrinol Metab 89(1):419–424

    Article  PubMed  CAS  Google Scholar 

  • Higashi Y, Yoshioka H, Yamane M et al (1986) Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc Natl Acad Sci USA 83(9):2841–2845

    Article  PubMed  CAS  Google Scholar 

  • Hines M, Brook C, Conway GS (2004) Androgen and psychosexual development: core gender identity, sexual orientation and recalled childhood gender role behavior in women and men with congenital adrenal hyperplasia (CAH). J Sex Res 41(1):75–81

    Article  PubMed  Google Scholar 

  • Hughes IA (1990a) Congenital adrenal hyperplasia. Trends Endocrinol Metab 1(3):123–128

    Article  PubMed  CAS  Google Scholar 

  • Hughes IA (1990b) Monitoring treatment in congenital adrenal hyperplasia. Arch Dis Child 65(3):333

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Yanase T, Waterman MR et al (1992) Canadian Menn­onites and individuals residing in the Friesland region of The Netherlands share the same molecular basis of 17 alpha-hydroxylase deficiency. Hum Genet 89(1):95–96

    Article  PubMed  CAS  Google Scholar 

  • Jaaskelainen J, Tiitinen A, Voutilainen R (2001) Sexual function and fertility in adult females and males with congenital adrenal hyperplasia. Horm Res 56(3–4):73–80

    PubMed  CAS  Google Scholar 

  • John M, Menon SK, Shah NS et al (2009) Congenital adrenal hyperplasia 11beta-hydroxylase deficiency: two cases managed with bilateral adrenalectomy. Singapore Med J 50(2):e68–e70

    PubMed  CAS  Google Scholar 

  • Kacem M, Moussa A, Khochtali I et al (2009) Bilateral adrenalectomy for severe hypertension in congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency: long term follow-up. Ann Endocrinol (Paris) 70(2):113–118

    Article  CAS  Google Scholar 

  • Kelso WM, Nicholls ME, Warne GL et al (2000) Cerebral lateralization and cognitive functioning in patients with congenital adrenal hyperplasia. Neuropsychology 14(3):370–378

    Article  PubMed  CAS  Google Scholar 

  • Khoury K, Barbar E, Ainmelk Y et al (2009) Gonadal function, first cases of pregnancy, and child delivery in a woman with lipoid congenital adrenal hyperplasia. J Clin Endocrinol Metab 94(4):1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Kimberley N, Hutson JM, Southwell BR et al (2011) Well-being and sexual function outcomes in women with vaginal agenesis. Fertil Steril 95(1):238–241

    Article  PubMed  Google Scholar 

  • Kolon TF, Ferrer FA, McKenna PH (1998) Clinical and molecular analysis of XX sex reversed patients. J Urol 160(3 Pt 2):1169–1172; discussion 1178

    PubMed  CAS  Google Scholar 

  • Koppens PF, Hoogenboezem T, Degenhart HJ (2002) Duplication of the CYP21A2 gene complicates mutation analysis of steroid 21-hydroxylase deficiency: characteristics of three unusual haplotypes. Hum Genet 111(4–5):405–410

    Article  PubMed  CAS  Google Scholar 

  • Krob G, Braun A, Kuhnle U (1994) True hermaphroditism: geographical distribution, clinical findings, chromosomes and gonadal histology. Eur J Pediatr 153(1):2–10

    Article  PubMed  CAS  Google Scholar 

  • Levine LS, Zachmann M, New MI et al (1978) Genetic mapping of the 21-hydroxylase-deficiency gene within the HLA linkage group. N Engl J Med 299(17):911–915

    Article  PubMed  CAS  Google Scholar 

  • Levine LS, Dupont B, Lorenzen F et al (1981) Genetic and hormonal characterization of cryptic 21-hydroxylase deficiency. J Clin Endocrinol Metab 53(6):1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Lourenco D, Brauner R, Lin L et al (2009) Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med 360(12):1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Lutfallah C, Wang W, Mason JI et al (2002) Newly proposed hormonal criteria via genotypic proof for type II 3beta-hydroxysteroid dehydrogenase deficiency. J Clin Endocrinol Metab 87(6):2611–2622

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Bahlburg HF (1999) What causes low rates of child-bearing in congenital adrenal hyperplasia? J Clin Endocrinol Metab 84(6):1844–1847

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Bahlburg HF, Gruen RS, New MI et al (1996) Gender change from female to male in classical congenital adrenal hyperplasia. Horm Behav 30(4):319–332

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Bahlburg HF, Dolezal C, Baker SW et al (2008) Sexual orientation in women with classical or non-classical congenital adrenal hyperplasia as a function of degree of prenatal androgen excess. Arch Sex Behav 37(1):85–99

    Article  PubMed  Google Scholar 

  • Miller WL (2004) Steroid 17alpha-hydroxylase deficiency – not rare everywhere. J Clin Endocrinol Metab 89(1):40–42

    Article  PubMed  CAS  Google Scholar 

  • Mulaikal RM, Migeon CJ, Rock JA (1987) Fertility rates in female patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N Engl J Med 316(4):178–182

    Article  PubMed  CAS  Google Scholar 

  • Nordenstrom A, Forest MG, Wedell A (2007) A case of 3beta-hydroxysteroid dehydrogenase type II (HSD3B2) deficiency picked up by neonatal screening for 21-hydroxylase deficiency: difficulties and delay in etiologic diagnosis. Horm Res 68(4):204–208

    Article  PubMed  Google Scholar 

  • Parajes S, Loidi L, Reisch N et al (2010) Functional consequences of seven novel mutations in the CYP11B1 gene: four mutations associated with nonclassic and three mutations causing classic 11{beta}-hydroxylase deficiency. J Clin Endocrinol Metab 95(2):779–788

    Article  PubMed  CAS  Google Scholar 

  • Robins T, Carlsson J, Sunnerhagen M et al (2006) Molecular model of human CYP21 based on mammalian CYP2C5: structural features correlate with clinical severity of mutations causing congenital adrenal hyperplasia. Mol Endocrinol 20(11):2946–2964

    Article  PubMed  CAS  Google Scholar 

  • Rosa S, Steigert M, Lang-Muritano M et al (2010) Clinical, genetic and functional characteristics of three novel CYP17A1 mutations causing combined 17alpha-hydroxylase/17,20-lyase deficiency. Horm Res Paediatr 73(3):198–204

    Article  PubMed  CAS  Google Scholar 

  • Rosler A, Levine LS, Schneider B et al (1977) The interrelationship of sodium balance, plasma renin activity and ACTH in congenital adrenal hyperplasia. J Clin Endocrinol Metab 45(3):500–512

    Article  PubMed  CAS  Google Scholar 

  • Rosler A, Weshler N, Leiberman E et al (1988) 11 Beta-hydroxylase deficiency congenital adrenal hyperplasia: update of prenatal diagnosis. J Clin Endocrinol Metab 66(4):830–838

    Article  PubMed  CAS  Google Scholar 

  • Rosler A, Leiberman E, Cohen T (1992) High frequency of congenital adrenal hyperplasia (classic 11 beta-hydroxylase deficiency) among Jews from Morocco. Am J Med Genet 42(6):827–834

    Article  PubMed  CAS  Google Scholar 

  • Simard J, Moisan AM, Morel Y (2002) Congenital adrenal hyperplasia due to 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase deficiency. Semin Reprod Med 20(3):255–276

    Article  PubMed  CAS  Google Scholar 

  • Speiser PW, White PC (2003) Congenital adrenal hyperplasia. N Engl J Med 349(8):776–788

    Article  PubMed  CAS  Google Scholar 

  • Sutton E, Hughes J, White S et al (2011) Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121(1):328–341

    Article  PubMed  CAS  Google Scholar 

  • Tapanainen JS, Vaskivuo T, Aittomaki K et al (1998) Inactivating FSH receptor mutations and gonadal dysfunction. Mol Cell Endocrinol 145(1–2):129–135

    Article  PubMed  CAS  Google Scholar 

  • Tian Q, Yao F, Sha G et al (2009) Genotyping of a Chinese family with 46, XX and 46, XY 17-hydroxylase deficiency. Gynecol Endocrinol 25(8):485–490

    Article  PubMed  CAS  Google Scholar 

  • Vallerie AM, Breech LL (2010) Update in Mullerian anomalies: diagnosis, management, and outcomes. Curr Opin Obstet Gynecol 22(5):381–387

    Article  PubMed  Google Scholar 

  • Van Wyk JJ, Ritzen EM (2003) The role of bilateral adrenalectomy in the treatment of congenital adrenal hyperplasia. J Clin Endocrinol Metab 88(7):2993–2998

    Article  PubMed  Google Scholar 

  • Van Wyk JJ, Gunther DF, Ritzen EM et al (1996) The use of adrenalectomy as a treatment for congenital adrenal hyperplasia. J Clin Endocrinol Metab 81(9):3180–3190

    Article  PubMed  Google Scholar 

  • Vorona E, Zitzmann M, Gromoll J et al (2007) Clinical, endocrinological, and epigenetic features of the 46, XX male syndrome, compared with 47, XXY Klinefelter patients. J Clin Endocrinol Metab 92(9):3458–3465

    Article  PubMed  CAS  Google Scholar 

  • White PC, Medscape (2009) Neonatal screening for congenital adrenal hyperplasia. Nat Rev Endocrinol 5(9):490–498

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski AB, Migeon CJ, Meyer-Bahlburg HF et al (2000) Complete androgen insensitivity syndrome: long-term medical, surgical, and psychosexual outcome. J Clin Endocrinol Metab 85(8):2664–2669

    Article  PubMed  CAS  Google Scholar 

  • Wudy SA, Hartmann M, Homoki J (2000) Hormonal diagnosis of 21-hydroxylase deficiency in plasma and urine of neonates using benchtop gas chromatography-mass spectrometry. J Endocrinol 165(3):679–683

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry L. Warne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Warne, G.L., Hewitt, J.K. (2012). 46,XX Disorders of Sex Development. In: Hutson, J., Warne, G., Grover, S. (eds) Disorders of Sex Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22964-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22964-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22963-3

  • Online ISBN: 978-3-642-22964-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics