Skip to main content

A Review of Applications of Evolutionary Algorithms in Pattern Recognition

  • Chapter
Pattern Recognition, Machine Intelligence and Biometrics

Abstract

This chapter presents a review of some of the most representative work regarding techniques and applications of evolutionary algorithms in pattern recognition. Evolutionary algorithms are a set of metaheuristics inspired on Darwins “survival of the fittest” principle which are stochastic in nature. Evolutionary algorithms present several advantages over traditional search and classification techniques, since they require less domain-specific information, are easy to use and operate on a set of solutions (the so-called population). Such advantages have made them very popular within pattern recognition (as well as in other domains) as will be seen in the review of applications presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzalez R C, Woods R E (1992) Digital Image Processing. Addison-Wesley, New York

    Google Scholar 

  2. Castleman K R (1996) Digital Image Processing. Prentice Hall, New Jersey

    Google Scholar 

  3. Pal S K, Wang P P (eds) (1996) Genetic Algorithms for Pattern Recognition. CRC Press, Boca Raton

    Google Scholar 

  4. Rizki M M, Zmuda M A, Tamburino L A (2002) Envolving pattern recognition systems. IEEE Transactions on Evolutionary Computation, 6(6): 594–609

    Article  Google Scholar 

  5. Glover F, Kochenberger G A (eds) (2003) Handbook of Metaheuristics. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  6. Ibaraki T, Nonobe K, Yagiura M (eds) (2005) Metaheuristics. Progress as Real Problem Solvers. Springer, New York

    MATH  Google Scholar 

  7. Goldberg D E (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York

    MATH  Google Scholar 

  8. Fogel D B (1995) Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. The Institute of Electrical and Electronic Engineers, New York

    Google Scholar 

  9. Eiben A E, Smith J E (2003) Introduction to Evolutionary Computing. Springer, Berlin

    MATH  Google Scholar 

  10. Sivanandam S N, Deepa S N (2008) Introduction to Genetic Algorithms. Springer, Berlin

    MATH  Google Scholar 

  11. Blum C, Roli A (2003) Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys, 35(3): 268–308

    Article  Google Scholar 

  12. Reeves C B (ed) (1993) Modern Heuristic Techniques for Combinatorial Problems. Wiley, Chichester

    MATH  Google Scholar 

  13. Fogel D B (ed) (1998) Evolutionary Computation. The Fossil Record. Selected Readings on the History of Evolutionary Algorithms. The Institute of Electrical and Electronic Engineers, New York

    Google Scholar 

  14. Holland J H (1962) Concerning Efficient Adaptive Systems. In: Yovits M C, Jacobi G T, Goldstein G D (eds) (1962) Self-Organizing Systems, pp 215–230. Spartan Books, Washington D C

    Google Scholar 

  15. Holland J H (1962) Outline for a Logical Theory of Adaptive Systems. Journal of the Association for Computing Machinery, 9: 297–314

    Article  MATH  Google Scholar 

  16. Schwefel H P (1965) Kybernetische Evolution als Strategie Der Experi-Mentellen Forschung in Der Strömungstechnik. Dipl-Ing Thesis

    Google Scholar 

  17. Schwefel H P (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser, Basel, Alemania

    MATH  Google Scholar 

  18. Schwefel H P (1981) Numerical Optimization of Computer Models. Wiley, Chichester

    MATH  Google Scholar 

  19. Fogel L J (1966) Artificial Intelligence Through Simulated Evolution. Wiley, New York

    MATH  Google Scholar 

  20. Fogel L J (1999) Artificial Intelligence Through Simulated Evolution. Forty Years of Evolutionary Programming. Wiley, New York

    Google Scholar 

  21. Koza J R (1989) Hierarchical genetic algorithms operating on populations of computer programs. In: Sridharan N S (ed) Proceedings of the 11th International Joint Conference on Artificial Intelligence, pp 768–774. Morgan Kaufmann, San Mateo

    Google Scholar 

  22. Koza J R (1992) Genetic Programming. On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge

    Google Scholar 

  23. Koza J R (1994) Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge

    MATH  Google Scholar 

  24. Koza J R, Bennet F H, III, Andre D et al (1999) Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, Sna Mateo

    Google Scholar 

  25. Price K V, Storn R M, Lampinen J A (2005) Differential Evolution. A Practical Approach to Global Optimization. Springer, Berlin

    Google Scholar 

  26. Kennedy J, Eberhart R C (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco

    Google Scholar 

  27. Xu R, Wunsch D (2009) Clustering. IEEE Press and Wiley, Hoboken

    Google Scholar 

  28. Gan G, Ma C, Wu J (2007) Data Clustering: Theory, Algorithms, and Applications. Society for Industrial and Applied Mathematics. Philadelphia, Pennsylvania

    Google Scholar 

  29. MacQueen J B (1967) Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 2: 281–297. University of California Press, Berkeley

    Google Scholar 

  30. Aloise D, Deshpande A, Hansen P et al (2009) NP-hardness of Euclidean Sum-of-squares Clustering. Machine Learning, 75(2): 245–249

    Article  Google Scholar 

  31. Mahajan M, Nimbhorkar P, Varadarajan K (2009) The Planar k-means Problem is NP-hard. Lecture Notes in Computer Science, 5431: 274–285

    Article  MathSciNet  Google Scholar 

  32. Holland J H (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  33. Ronald S (1995) Genetic Algorithms and Permutation-encoded Problems: Diversity Preservation and a Study of Multimodality. PhD Thesis, The University of South Australia

    Google Scholar 

  34. Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Programs, 3rd Edn. Springer, New York

    MATH  Google Scholar 

  35. Rothlauf F (2002) Representations for Genetic and Evolutionary Algorithms. Physica-Verlag, New York

    MATH  Google Scholar 

  36. Goldberg D E, Deb K (1991) A Comparison of Selection Schemes used in Genetic Algorithms. In: Gregory J E Rawlins (ed) Foundations of Genetic Algorithms, pp 69–93. Morgan Kaufmann, San Mateo

    Google Scholar 

  37. De Jong K A (1975) An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Thesis, University of Michigan, Ann Arbor, Michigan, USA

    Google Scholar 

  38. Booker L B (1982) Intelligent Behavior as an Adaptation to the Task Environment. PhD Thesis, Logic of Computers Group, University of Michigan, Ann Arbor, Michigan, USA

    Google Scholar 

  39. Brindle A (1981) Genetic Algorithms for Function Optimization. PhD Thesis, Department of Computer Science, University of Alberta, Alberta, Canada

    Google Scholar 

  40. Baker J E (1987) Reducing Bias and Inefficiency in the Selection Algorithm. In: John J Grefenstette (ed) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp 14–22. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  41. Grefenstette J J, Baker J E (1989) How Genetic Algorithms work: A critical look at implicit parallelism. In: David Schaffer J (ed) (1989) Proceedings of the Third International Conference on Genetic Algorithms, pp 20–27. Morgan Kaufmann Publishers, San Mateo

    Google Scholar 

  42. Baker J E (1985) Adaptive Selection Methods for Genetic Algorithms. In: John J Grefenstette (ed) Proceedings of the First International Conference on Genetic Algorithms, pp 101–111. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  43. Syswerda G. Uniform Crossover in Genetic Algorithms. In: Schaffer J D (ed) (1989) Proceedings of the Third International Conference on Genetic Algorithms, pp 2–9. Morgan Kaufmann, San Mateo

    Google Scholar 

  44. Mitchell M (1996) An Introduction to Genetic Algorithms. MIT Press, Cambridge

    Google Scholar 

  45. Dumitrescu D, Lazzerini B, Jain L C et al (2000) Evolutionary Computation. CRC Press, Boca Raton

    MATH  Google Scholar 

  46. Buckles B P, Petry F E (eds) (1992) Genetic Algorithms. Technology Series. IEEE Computer Society Press, New York

    Google Scholar 

  47. Rudolph G (1994) Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions on Neural Networks, 5(1): 96–101

    Article  Google Scholar 

  48. Eiben A E, Hinterding R, Michalewicz Z (1999) Parameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 3(2): 124–141

    Article  Google Scholar 

  49. Peña J M, Lozano J A, Larrañaga P (1999) An Empirical Comparison of Four Initialization Methods for the k-means Algorithm. Pattern Recognition Letters, 20: 1027–1040

    Article  Google Scholar 

  50. Maulik U, Bandyopadhyay S (2000) Genetic Algorithm-based Clustering Technique. Pattern Recognition, 33: 1455–1465

    Article  Google Scholar 

  51. Krishna K, Narasimha Murty M (1999) Genetic k-means Algorithm. IEEE Trans on Systems, Man and Cybernetics Part B, 29(3): 433–439

    Article  Google Scholar 

  52. Fitzgibbon A, Pilu M, Fisher R B (1999) Direct Least Square Fitting of Ellipses. IEEE Pattern Analysis and Machine Intelligence, 21(5): 476–480

    Article  Google Scholar 

  53. Ahn S J, Rauth W, H-J Warnecke (2001) Least-squares Orthogonal Distances Fitting of Circle, Sphere, Ellipse, Hyperbola, and Parabola. Pattern Recognition, 34(12): 2283–2303

    Article  MATH  Google Scholar 

  54. de la Fraga L G, Vite Silva I, Cruz-Cortes N (2009) Euclidean Distance fit of Conics Using Differential Evolution, pp 171–184. Springer, Heidelberg

    Google Scholar 

  55. de la Fraga L G, Lopez G M Dominguez (2010) Robust Fitting of Ellipses with Heuristics. 2010 IEEE Congress on Evolutionary Computation, CEC 2010, (ACCEPTED)

    Google Scholar 

  56. Herrera F, Lozano M, Verdegay J L (1998) Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis. Artificial Intelligence Review, 12(4): 265–319

    Article  MATH  Google Scholar 

  57. García-Martínez C, Lozano M, Herrera F et al (2008) Global and Local Real-Coded Genetic Algorithms Based on Parent-Centric Crossover Operators. European Journal of Operational Research, 185(3): 1088–1113

    Article  MATH  Google Scholar 

  58. Chakraborty U K (2008) Advances in Differential Evolution. Studies in Computational Intelligence. Springer, Heidelberg

    Google Scholar 

  59. Storn R, Price K (1995) Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012. International Computer Science Institute, Berkeley

    Google Scholar 

  60. Storn R, Price K (1997) Differential Evolution: A Fast and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4): 341–359

    Article  MathSciNet  MATH  Google Scholar 

  61. Schwefel H P (1995) Evolution and Optimum Seeking. Wiley, New York

    Google Scholar 

  62. Zielinski K, Laur R (2008) Stopping Criteria for Differential Evolution in Constrained Single-objective Optimization. In: Chakraborty U K (ed) Advances in Differential Evolution. Studies in Computational Intelligence. Springer, Heidelberg

    Google Scholar 

  63. Efrén Mezura-Montes, Jesús Velázquez-Reyes, Carlos A Coello Coello (2006) Comparing Differential Evolution Models for Global Optimization. In: Maarten Keijzer et al (ed) (2006) 2006 Genetic and Evolutionary Computation Conference (GECCO2006), 1: 485–492, Seattle, Washington, USA, July 2006. ACM Press, New York

    Google Scholar 

  64. Price K V (1999) An Introduction to Differential Evolution. In: David Corne, Marco Dorigo, Fred Glover (eds) New Ideas in Optimization, pp 79–s108. McGraw-Hill, London

    Google Scholar 

  65. Feoktistov V, Janaqi S (2004) Generalization of the Strategies in Differential Evolution. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS 2004), 2004, Santa Fe, New Mexico, USA, p 165a, New Mexico, USA, April 2004. IEEE Computer Society.

    Google Scholar 

  66. Bhandarkar S M, Zhang H (1999) Image segmentation using evolutionary computation. IEEE Transactions on Evolutionary Computation, 3(1): 1–21

    Article  Google Scholar 

  67. Kirkpatrick S, Gellatt C D, Vecchi M P (1983) Optimization by Simulated Annealing. Science, 220(4598): 671–680

    Article  MathSciNet  MATH  Google Scholar 

  68. Creutz M (1983) Microcanonical monte-carlo simulation. Physical Review Letters, 50(19): 1411–1414

    Article  MathSciNet  Google Scholar 

  69. Wang Y H, Prade R A, Griffith J et al (1994) A Fast Random Cost Algorithm for Physical Mapping. Proceedings of the National Academy of Sciences of the United States of America, 91(23): 11094–11098

    Article  Google Scholar 

  70. Moscato P (1999) Memetic Algorithms: A Short Introduction. In: David Corne, Fred Glover, Marco Dorigo (eds) New Ideas in Optimization, pp 219–234. McGraw-Hill, New York

    Google Scholar 

  71. Tianzi Jiang, Faguo Yang (2002) An Evolutionary Tabu Search for Cell Image Segmentation. IEEE Transactions on Systems, Man and Cybernetics Part B-Cybernetics, 32(5): 675–678

    Article  Google Scholar 

  72. Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  73. Canny J (1986) A Computational Approach to Edge-Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679–698

    Article  Google Scholar 

  74. Bocchi L, Ballerini L, Hässler S (2005) A New Evolutionary Algorithm for Image Segmentation. In: Franz Rothlauf et al (ed) Applications of Evolutionary Computing. Evoworkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, pp 264–273. Springer. Lecture Notes in Computer Science, Vol 3449. Lausanne, Switzerland, March/April 2005

    Google Scholar 

  75. Gardner M (1970) The fantastic combinations of John Conways new solitaire game “life”. Scientific American, 223: 120–123

    Article  Google Scholar 

  76. Bezdek J C (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  77. Krawiec K, Howard D, Zhang M (2007) Overview of Object Detection and Image Analysis by Means of Genetic Programming Techniques. In Proceedings of the 2007 Frontiers in the Convergence of Bioscience and Information Technologies, pp 779–784. IEEE Computer Society Press

    Google Scholar 

  78. Muni D P, Pal N R, Das J (2006) Genetic Programming for Simultaneous Feature Selection and Classifier Design. IEEE Transactions on Systems, Man and Cybernetics Part B-Cybernetics, 36(1): 106–117

    Article  Google Scholar 

  79. Coello Coello C A, Lamont G B, Van Veldhuizen D A (2007) Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York

    MATH  Google Scholar 

  80. Watchareeruetai U, Takeuchi Y, Matsumoto T et al (2008) Transformation of Redundant Representations of Linear Genetic Programming into Canonical Forms for Efficient Extraction of Image Features. In: 2008 IEEE Congress on Evolutionary Computation (CEC 2008), pp 1996–2003, Hong Kong, June 2008. IEEE Service Center

    Google Scholar 

  81. Brameier M F, Banzhaf W (2007) Linear Genetic Programming. Springer, New York

    MATH  Google Scholar 

  82. Kowaliw T, Banzhaf W, Kharma N et al (2009) Evolving Novel Image Features Using Genetic Programming-based Image Transforms. In 2009 IEEE Congress on Evolutionary Computation (CEC2009), pp 2502–2507. IEEE Press, Trondheim

    Chapter  Google Scholar 

  83. Miller J F, Thomson P, Fogarty T (1998) Designing Electronic Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study. In: Quagliarella D, Périaux J, Poloni C et al (eds) Genetic Algorithms and Evolution Strategy in Engineering and Computer Science, pp 105–131. Morgan Kaufmann, Chichester

    Google Scholar 

  84. Julian F Miller, Peter Thomson (2000) Cartesian Genetic Programming. In: Riccardo Poli, Wolfgang Banzhaf, William B Langdon, Julian Miller, Peter Nordin, Terence C Fogarty (eds) Genetic Programming, European Conference, EuroGP 2000, pp 121–132, Edinburgh, Scotland, UK, April 2000. Springer. Lecture Notes in Computer Science, vol 1802

    Google Scholar 

  85. Guo P F, Bhattacharya P, Kharma N (2009) An Efficient Image Pattern Recognition System Using an Evolutionary Search Strategy. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics. IEEE Press, San Antonio

    Google Scholar 

  86. Mitchell T M (1997) Machine Learning. McGraw-Hill, London

    MATH  Google Scholar 

  87. Vapnik V N (1999) The Nature of Statistical Learning Theory, 2nd edn. Springer, New York

    Google Scholar 

  88. Raymer M L, Punch W F, Goodman E D et al (2000) Dimensionality Reduction Using Genetic Algorithms. IEEE Transactions on Evolutionary Computation, 4(2): 164–171

    Article  Google Scholar 

  89. de la Iglesia B, Reynolds A, Rayward-Smith V J (2005) Developments on a Multiobjective Metaheuristic (MOMH) Algorithm for Finding Interesting Sets of Classification Rules. In: Carlos A Coello Coello, Arturo Hernández Aguirre, Eckart Zitzler (eds) Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005, pp 826–840, Guanajuato, México, March 2005. Springer. Lecture Notes in Computer Science, vol 3410

    Google Scholar 

  90. de la Iglesia B, Richards G, Philpott M S et al (2006) The Application and Effectiveness of a Multi-objective Metaheuristic Algorithm for Partial Classification. European Journal of Operational Research, 169: 898–917

    Article  MathSciNet  MATH  Google Scholar 

  91. Deb K, Pratap A, Agarwal S et al (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2): 182–197

    Article  Google Scholar 

  92. Newman D J, Hettich S, Blake C L et al (1998) UCI Repository of machine learning databases http://www.ics.uci.edu/~mlearn/MLRepository.html. Accessed 12 October 2010

    Google Scholar 

  93. Rahila H, Sheikh M M, Raghuwanshi et al (2008) Genetic Algorithm Based Clustering: A Survey. In First International Conference on Emerging Trends in Engineering and Technology, pp 314–319. IEEE Press, Nagpur

    Google Scholar 

  94. Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognition, 35(6): 1197–1208

    Article  MATH  Google Scholar 

  95. Davies D L, Bouldin D W (1979) Cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2): 224–227

    Article  Google Scholar 

  96. [96] Bandyopadhyay S, Pal S K, Aruna B (2004) Multiobjective GAs, Quantitative Indices, and Pattern Classification. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 34(5)

    Google Scholar 

  97. Knowles J D, Corne D W (2000) Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2): 149–172

    Article  Google Scholar 

  98. Das R, Mitra S, Banka H, Mukhopadhyay S (2007) Evolutionary Biclustering with Correlation for Gene Interaction Networks. In: Ashish Ghosh, Rajat K De, Sankar K Pal (eds) Pattern Recognition and Machine Intelligence. Second International Conference (PReMI 2007), pp 416-424. Springer, Lecture Notes in Computer Science, Vol 4815, Kolkata, India, December 18-22 2007

    Google Scholar 

  99. Radtke P V W, Wong T, Sabourin R (2009) Solution Over-Fit Control in Evolutionary Multiobjective Optimization of Pattern Classification Systems. International Journal of Pattern Recognition and Artificial Intelligence, 23(6): 1107–1127

    Article  Google Scholar 

  100. Chatelain C, Adam S, Lecourtier Y et al (2010) A Multi-model Selection Framework for Unknown and/or Evolutive Misclassification Cost Problems. Pattern Recognition, 43(3): 815–823

    Article  MATH  Google Scholar 

  101. Jin Y (2005) A Comprehensive Survey of Fitness Approximation in Evolutionary Computation. Soft Computing, 9(1): 3–12

    Article  Google Scholar 

  102. Corne D, Dorigo M, Glover F (eds) (1999) New Ideas in Optimization. McGraw-Hill, London

    Google Scholar 

  103. Kennedy J, Eberhart R C (1995) Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, pp 1942–1948. IEEE Service Center, Piscataway

    Google Scholar 

  104. Dasgupta D (eds) (1999) Artificial Immune Systems and Their Applications. Springer, Berlin

    MATH  Google Scholar 

  105. de Castro L N, Timmis J (2002) Artificial Immnue System: A New Computational Intelligence Approach. Springer, London

    Google Scholar 

  106. Wang W, Gao S, Tang Z (2009) Improved pattern recognition with complex artificial immune system. Soft Computing, 13(12): 1209–1217

    Article  MATH  Google Scholar 

  107. Dorigo M, Di Caro G (1999) The Ant Colony Optimization Meta-Heuristic. In: David Corne, Marco Dorigo, Fred Glover (eds) New Ideas in Optimization. McGraw-Hill, London

    Google Scholar 

  108. Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de la Fraga, L.G., Coello Coello, C.A. (2011). A Review of Applications of Evolutionary Algorithms in Pattern Recognition. In: Wang, P.S.P. (eds) Pattern Recognition, Machine Intelligence and Biometrics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22407-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22407-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22406-5

  • Online ISBN: 978-3-642-22407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics