Skip to main content

Near-Space Vehicles in Passive Remote Sensing

  • Chapter
  • First Online:
Near-Space Remote Sensing

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1070 Accesses

Abstract

There is a region in near-space where the average wind is less than 10 m/s; hence, persistent coverage and high flying speed can be obtained for vehicles operating in this region. For this reason, near-space has received much attention in the recent years. In this chapter, we consider mainly the role of near-space vehicles in passive remote sensing applications from a top-level system description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moccia, A., Salzillo, G., D’Errico, M., Rufino, G., Alberti, G.: Performace of spaceborne bistatic synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst. 41, 1383–1395 (2005)

    Article  Google Scholar 

  2. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking, part II: motion models of ballistic and space targets. IEEE Trans. Aerosp. Electron. Syst. 46, 196–119 (2010)

    Google Scholar 

  3. Allen, E.H.: The case for near-space. Aerosp. Am. 22, 31–34 (2006)

    Google Scholar 

  4. Tomme, E.B.: The paradigm shift of effects-based space: near-space as a combat space effects enabler. http://www.airpower.au.af.mil (2009). Accessed May 2010

    Google Scholar 

  5. Progri, I.: Geolocation of RF Signals: Principles and Simulations. Springer, London (2011)

    Book  Google Scholar 

  6. Marcel, M.J., Baker, J.: Interdisciplinary design of a near-space vehicle. In: Proceedings of Southeast Conference, Richmond, VA, 421–426 (2007)

    Google Scholar 

  7. Guan, M.X., Guo, Q., Li, L.: A novel access protocol for communication system in near-space. In: Proceedings of Wireless Communication and Network Mobile Computation Conference, Shanghai, China, 1849–1852 (2007)

    Google Scholar 

  8. Wang, W.Q., Cai, J.Y., Peng, Q.C.: Near-space SAR: a revolutionay microwave remote sensing mission. In: Proceedings of Asia-Pacific Synthetic Aperture Radar Conference, Huangshan, China, 127–131 (2007)

    Google Scholar 

  9. Galletti, M., Krieger, G., Thomas, B., Marquart, M., Johannes, S.S.: Concept design of a near-space radar for tsunami detection. In: Proceedings of IEEE Geoscience Remote Sensors Symposium, Barcelona, 34–37 (2007)

    Google Scholar 

  10. Wang, W.Q., Cai, J.Y., Peng, Q.C.: Near-space microwave radar remote sensing: potential and challenge analysis. Remote Sens. 2, 717–739 (2010)

    Article  Google Scholar 

  11. Wang, W.Q.: Application of near-space passive radar for homeland security. Sens. Imag: Int. J. 8, 39–52 (2007)

    Article  Google Scholar 

  12. Zavorotny, V.U., Voronovich, A.G.: Scattering of GPS signals from the ocean with wind remote sensing applications. IEEE Trans. Geosci. Remote Sens. 38, 951–964 (2000)

    Article  Google Scholar 

  13. Heise, S., Wickert, J., Beyerle, G., Schmidt, T., Smit, H., Cammas, J.P., Rothacher, M.: Comparison of water vapor and temperature results from GPS radio occultation aboard CHAMP with MOZAIC aircraft measurements. IEEE Trans. Geosci. Remote Sens. 46, 3406–3411 (2008)

    Article  Google Scholar 

  14. Garrison, J.L., Komjathy, A., Zavorotny, V., Katzberg, S.J.: Wind speed measurements using forward scattered GPS signals. IEEE Trans. Geosci. Remote Sens. 40, 50–65 (2002)

    Article  Google Scholar 

  15. Gleason, S., Hodgart, S., Sun, Y.P, Gommenginger, C., Mackin, S., Adjrad, M., Unwin, M.: Wind speed measurements using forward scattered GPS signals. IEEE Trans. Geosci. Remote Sens. 43, 1229–1241 (2005)

    Article  Google Scholar 

  16. Bindlish, R., Crow, W.T., Jackson, T.J.: Role of passive microwave remote sensing in improving flood forecasts. IEEE Geosci. Remote Sens. Lett. 6, 112–116 (2009)

    Article  Google Scholar 

  17. Cherniakov, M.: Bistatic Radar: Emerging Technology. Wiley, New York (2007)

    Book  Google Scholar 

  18. Wang, W.Q., Cai, J.Y.: A technique for jamming bi- and multi-static SAR systems. IEEE Geosci. Remote Sens. Lett. 4, 80–82 (2007)

    Article  Google Scholar 

  19. Wang, W.Q.: Multi-Antenna Synthetic Aperture Radar Imaging: Principles and Applications (in Chinese). National Defense Industry Press, Beijing (2011)

    Google Scholar 

  20. Grewal, M.S., Weill, L.R., Andrews, A.P.: Global Positioning Systems: Inertial Navigation and Integration. Wiley, New York (2001)

    Google Scholar 

  21. He, F., Cherniakov, M., Zeng, T.: Signal detectability in SS-BSAR with GNSS non-cooperative transmitter. IEE Proc. Radar Sonar Navig. 152, 124–132 (2005)

    Article  Google Scholar 

  22. Gleason, S., Hodgart, S., Sun, Y., Gommenginger, C., Mackin, S., Adjrac, M., Unwin, M.: Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing. IEEE Trans. Geosci. Remote Sens. 43, 1229–1241 (2005)

    Article  Google Scholar 

  23. Cherniakov, M., Saini, R., Antoniou, M., Zuo, R., Plakidis, E.: Experiences gained during the development of a passive BSAR with GNSS transmitters of opportunity. Int. J. Navig. Observ. 1, 1–12 (2008)

    Article  Google Scholar 

  24. Wang, W.Q.: Near-space passive radar for homeland security: potential and challenge. In: Proceedings of XXI International Society Photogrammetry Remote Sensors Symposium, Beijing, China, 1021–1027 (2008)

    Google Scholar 

  25. Krieger, G., Moccia, A.: Spaceborne bi- and multistatic SAR: potential and challenges. IEE Proc. Radar Sonar Navig. 153, 184–198 (2006)

    Article  Google Scholar 

  26. Neo, Y.L., Wong, F.H., Cumming, I.G.: Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm. IEEE Trans. Geosci. Remote Sens. 46, 14–21 (2006)

    Article  Google Scholar 

  27. Nico, G., Tesauro, M.: On the existence of coverage and integration time regimes in bistatic SAR configurations. IEEE Geosci. Remote Sens. Lett. 4, 426–430 (2007)

    Article  Google Scholar 

  28. Wang, W.Q., Cai, J.Y.: Azimuth-variant bistatic synthetic aperture radar data processing. In: Daniels, J.A. (ed.) Advances in Environmental Research. NOVA Publisher, New York (2011)

    Google Scholar 

  29. Marcos, J.S., Dekker, P.L., Mallorqui, J.J., Aguasca, A., Prats, P.: SABRINA: a SAR bistatic receiver for interferometric applications. IEEE Geosci. Remote Sens. Lett. 4, 307–311 (2007)

    Article  Google Scholar 

  30. Liebe, J.R., van de Giesen, N., Andreini, M.S., Steenhuis, T.S., Walter, M.T.: Suitability and limitations of ENVISAT ASAR for monitoring small reserviors in a semiarid area. IEEE Trans. Geosci. Remote Sens. 47, 1536–1547 (2009)

    Article  Google Scholar 

  31. Wong, F.H., Yeo, T.S.: New application of nonlinear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 39, 946–953 (2001)

    Article  Google Scholar 

  32. Loffeld, O., Nies, H., Peters, V., Knedlik, S.: Models and useful relations for bistatic SAR processing. IEEE Trans. Geosci. Remote Sens. 42, 2031–2038 (2004)

    Article  Google Scholar 

  33. Neo, Y.L., Wong, F.H., Cumming, I.G.: A two-dimensional spectrum for bistatic SAR processing using series reversion. IEEE Geosci. Remote Sens. Lett. 4, 93–96 (2007)

    Article  Google Scholar 

  34. Wong, F.H., Neo, Y.L., Cumming, I.G.: Focusing bistatic SAR data using the nonlinear chirp scaling algorithm. IEEE Trans. Geosci. Remote Sens. 46, 2493–2505 (2008)

    Article  Google Scholar 

  35. Geng, X.P., Yan, H.H., Wang, Y.F.: A two-dimensional spectrum model for general bistatic SAR. IEEE Trans. Geosci. Remote Sens. 46, 2216–2223 (2008)

    Article  Google Scholar 

  36. Liou, Y.A., Pavelyev, A.G., Liu, A.G., Pavelyev, A.A., Yen, N., Huang, C.Y., Fong, C.J.: FORMOSAT-3/COSMIC GPS radio occultation mission: preliminary results. IEEE Trans. Geosci. Remote Sens. 45, 3813–3826 (2007)

    Article  Google Scholar 

  37. Kursinski, E.R., Hajj, G.A., Schofield, J.T.: Observing earth’s atmosphere with occultation measurements using the global positioning system. J. Geophys. Rev. 102, 23429–23465 (1997)

    Article  Google Scholar 

  38. Lantilhac, S.: UAV flight plan optimized for sensor requirements. IEEE Aerosp. Electron. Syst. Mag. 25, 11–14 (2010)

    Article  Google Scholar 

  39. Joseph, A.T., Vander Velde, R., O’Neill, P.E., Lang, R.H., Gish, T.: Soil moisture retrieval during a corn growth cycle using L-band (1.6GHz) radar observations. IEEE Trans. Geosci. Remote Sens. 46, 2365–2374 (2008)

    Article  Google Scholar 

  40. Renaux, A., Atallah, N.L., Forster, P., Larzabal, P.: A useful form of the Abel bound and its application to estimator threshold prediction. IEEE Trans. Sig. Process 55, 2365–2369 (2007)

    Article  Google Scholar 

  41. Eigel, R., Collins, P., Terzuoli, T., Nesti, G., Fortuny, J.: Bistatic scattering characterization of complex objects. IEEE Trans. Geosci. Remote Sens. 38, 2078–2092 (2000)

    Article  Google Scholar 

  42. Wang, W.Q.: Conceptual design of near-space radar for ocean remote sensing. In: Proceedings of International Workshop Advances SAR Oceanography from ENVISAT and ERS Missions, Italy, 1–5 (2008)

    Google Scholar 

  43. Wang, W.Q., Cai, J.Y., Peng, Q.C.: Passive ocean remote sensing by near-space vehicle-borne GPS receiver. In: Tang, D.L. (ed.) Remote Sensing of the Changing Oceans, Springer-Verlag, Heidelberg (2011)

    Google Scholar 

  44. Kouchi, K., Yamazaki, F.: Characteristics of tsunami-affected areas in moderate-resolution satellite images. IEEE Trans. Geosci. Remote Sens. 45, 1650–1657 (2007)

    Article  Google Scholar 

  45. Tralli, D.M., Blom, R.G., Zlotnichi, V., Donnellan, A., Evans, D.L.: Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramme Remote Sens. 59, 185–198 (2005)

    Article  Google Scholar 

  46. Bovolo, F., Bruzzone, L.: A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment. IEEE Trans. Geosci. Remote Sens. 45, 1658–1679 (2007)

    Article  Google Scholar 

  47. Meyers, R.G., Draim, C.J.E., Cefola, P.J., Raizer, V.Y.: A new tsunami detection concept using space-based microwave radiometry. In: Proceedings of IEEE Geoscience Remote sensors Symposium, Boston, MA, 958–961 (2008)

    Google Scholar 

  48. Borrero, J.C.: Field data and satellite imagery of tsunami effects in Banda Aceh. Science 308, 1596–1597 (2005)

    Article  Google Scholar 

  49. Meyer, F., Hinz, S., Laika, A., Weihing, D., Bamler, R.: Performance analysis of the TerraSAR-X traffic monitoring concept. ISPRS J. Photogramm. Remote Sens. 6, 225–242 (2006)

    Article  Google Scholar 

  50. Le Caillec, J.M.: Study of the SAR signature of internal waves by nonlinear parameteric autoregressive models. IEEE Trans. Geosci. Remote Sens. 44, 148–158 (2006)

    Article  Google Scholar 

  51. Rodenas, J.A., Garello, R.: Internal wave detection and location in SAR images using wavelet transform. IEEE Trans. Geosci. Remote Sens. 36, 1494–1507 (1998)

    Article  Google Scholar 

  52. Hogan, G.G., Chapman, R.D., Watson, G., Thompson, D.R.: Observations of ship-generated interal waves in SAR images. IEEE Trans. Geosci. Remote. Sens. 34, 532–542 (1996)

    Article  Google Scholar 

  53. Auterman, J.L.: Phase stability requirements for a bistatic SAR. In: Proceedings of IEEE Naturalist Radar Conference, Atlanta, Georgia, 48–52 (1984)

    Google Scholar 

  54. Wang, W.Q.: Analytical modeling and simulation of phase noise in bistatic synthetic aperture radar systems. Fluct. Noise. Lett. 6, 297–303 (2006)

    Article  Google Scholar 

  55. Wang, W.Q.: Clock timing jitter analysis and compensation for bistatic synthetic aperture radar systems. Fluct. Noise Lett. 7, 341–350 (2007)

    Article  Google Scholar 

  56. Wang, W.Q.: Approach of adaptive synchronization for bistatic SAR real-time imaging. IEEE Trans. Geosci. Remote Sens. 45, 2695–2700 (2007)

    Article  Google Scholar 

  57. Wang, W.Q.: GPS-based time & phase synchronization processing for distributed SAR. IEEE Trans. Aerosp. Electron Syst. 45, 1040–1051 (2009)

    Article  Google Scholar 

  58. Wang, W.Q.: Bistatic synthetic aperture radar synchronization processing. In: Kouemou, G. (ed.) Radar Technology. In-Tech Press, India (2010)

    Google Scholar 

  59. Gierull, C.: Mitigation of phase noise in bistatic SAR systems with extremely large synthetic apertures. In: Proceedings of Europe Synthetic Aperture Radar Symposium, Dresden, Germany, 1251–1254 (2006)

    Google Scholar 

  60. Younis, M., Metzig, R., Krieger, G.: Performance prediction of a phase synchronization link for bistatic SAR. IEEE Geosci. Remote Sens. Lett. 3, 429–433 (2006)

    Article  Google Scholar 

  61. Wang, W.Q., Ding, C.B., Liang, X.D.: Time and phase synchronization via direct-path signal for bistatic synthetic aperture radar systems. IET Radar Sonar Navig. 2, 1–11 (2008)

    Article  Google Scholar 

  62. Dickey, F.M., Doerry, A.W., Romero, L.A.: Degrading effects of the lower atmosphere on long range airborne synthetic aperture radar imaging. IET Radar Sonar Navig. 1, 329–339 (2007)

    Article  Google Scholar 

  63. Fornaro, G., Franceschetti, G., Pema, S.: Motion compensation errors: effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electron Syst. 41, 1338–1351 (2005)

    Google Scholar 

  64. Carrara, W.G., Goodman, R.S., Majewski, R.M.: Spotlight Synthetic Aperture Radar: Signal Processing Algorithm. Artech House, Norwood (1995)

    MATH  Google Scholar 

  65. Potsis, A., Reigber, A., Mittermayer, J., Moreira, A., Uzunoglou, N.: Sub-aperture algorithm for motion compensation improvement in wide-beam SAR data processing. Electron. Lett. 37, 1405–1407 (2001)

    Article  Google Scholar 

  66. Wendler, M., Krieger, G., Horn, R.: Results of a joint bistatic airborne SAR experiment. In: Proceedings of International Radar Symposium, Dresden, Germany, 247–253 (2003)

    Google Scholar 

  67. Jackson, M.C.: The geometry of bistatic radar systems. IEE Proc. Pt. F 133, 604–612 (1986)

    Google Scholar 

  68. Schoenenberger, J.G., Forrest, J.R.: Principles of independent receivers for use with cooperative radar transmitters. Radio Electron. Eng. 52, 93–101 (1982)

    Article  Google Scholar 

  69. Massonnet, D.: Capabilities and limitations of the interferometric cartwheel. IEEE Trans. Geosci. Remote Sens. 39, 506–520 (2001)

    Article  Google Scholar 

  70. D’Errico, M., Mocccia, A.: Altitude and antenna pointing design of bistatic radar formations. IEEE Trans. Aerosp. Electron. Syst. 39, 949–959 (2003)

    Article  Google Scholar 

  71. Huang, H.F., Liang, D.N.: The comparison of altitudeand antenna pointing design strategies of noncooperative spaceborne bistatic radar. USA, 568–571 (2005)

    Google Scholar 

  72. Tang, Z.Y., Zhang, S.R.: Bistatic Synthetic Aperture Radar System and Principle (in Chinese). National Defense Press, Beijing, China (2003)

    Google Scholar 

  73. Wang, W.Q., Cai, J.Y.: Antenna directing synchronization for bistatic synthetic aperture radar systems. IEEE Antenna Wireless Propag. Lett. 9, 307–310 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Qin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Wen-Qin Wang

About this chapter

Cite this chapter

Wang, WQ. (2011). Near-Space Vehicles in Passive Remote Sensing. In: Near-Space Remote Sensing. SpringerBriefs in Electrical and Computer Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22188-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22188-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22187-3

  • Online ISBN: 978-3-642-22188-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics