Skip to main content

Self-Assembled Monolayers for Nanotribology and Surface Protection

  • Chapter
  • First Online:
Nanotribology and Nanomechanics II

Abstract

Reliability of various micro- and nanodevices requiring relative motion as well as magnetic storage devices requires the use of hydrophobic and lubricating films to minimize adhesion, stiction, friction, and wear. In various applications, surfaces need to be protected from exposure to the operating environment, and hydrophobic films are of interest. The surface films should be molecularly thick, well-organized, chemically bonded to the substrate, and insensitive to environment. Ordered molecular assemblies with high hydrophobicity can be engineered using chemical grafting of various polymer molecules with suitable functional head groups, spacer chains, and nonpolar surface terminal groups.

In this chapter, we focus on self-assembled monolayers (SAMs) with high hydrophobicity and good nanotribological properties. SAMs are produced by various organic precursors. We first present a primer to organic chemistry, followed by an overview of selected SAMs with various substrates, spacer chains, and terminal groups in the molecular chains and an overview of nanotribological properties of SAMs. The contact angle, adhesion, friction, and wear properties of SAMs having various spacer chains with different surface terminal and head groups (hexadecane thiol, biphenyl thiol, perfluoroalkylsilane, alkylsilane, perfluoroalkylphosphonate, and alkylphosphonate) on various substrates (Au, Si, and Al) are surveyed. Chemical degradation mechanisms and environmental effects are studied. Based on the contact angle and nanotribological properties of various SAM films by atomic force microscopy (AFM) it is found that perfluoroalkylsilane and perfluorophosphonate SAMs exhibit attractive hydrophobic and tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bhushan, J.N. Israelachvili, U. Landman, Nanotribology, Friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Google Scholar 

  2. B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York, 1996)

    Google Scholar 

  3. B. Bhushan (Ed.), Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht, 1998)

    Google Scholar 

  4. B. Bhushan (Ed.), Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton, 1999)

    Google Scholar 

  5. B. Bhushan, Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices, Microelectron. Eng. 84, 387–412 (2007)

    Google Scholar 

  6. B. Bhushan (Ed.), Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Berlin, 2008)

    Google Scholar 

  7. B. Bhushan, Nanotribology and nanomechanics in nano/biotechnology, Philos. Trans. R. Soc. Lond. Ser. A 366, 1499–1537 (2008)

    MathSciNet  Google Scholar 

  8. K.F. Man, B.H. Stark, R. Ramesham, A Resource Handbook for MEMS Reliability (Jet Propulsion Laboratory Press, Pasadena 1998), Rev. A

    Google Scholar 

  9. K.F. Man, MEMS Reliability for Space Applications by Elimination of Potential Failure Modes Through Testing and Analysis (Jet Propulsion Laboratory Press, Pasadena, 2002)

    Google Scholar 

  10. D.M. Tanner, N.F. Smith, L.W. Irwin, W.P. Eaton, K.S. Helgesen, J.J. Clement, W.M. Miller, J.A. Walraven, K.A. Peterson, P. Tangyunyong, M.T. Dugger, S.L. Miller, MEMS Reliability: Infrastructure, Test Structure, Experiments, and Failure Modes (Sandia National Laboratories, Albuquerque, 2000), SAND2000-0091

    Google Scholar 

  11. A.W. Adamson, Physical Chemistry of Surfaces, 5th edn. (Wiley, New York, 1990)

    Google Scholar 

  12. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic, London, 1992)

    Google Scholar 

  13. M.E. Schrader, G.I. Loeb (Ed.), Modern Approaches to Wettability (Plenum, New York, 1992)

    Google Scholar 

  14. B. Bhushan, Principles and Applications of Tribology (Wiley, New York, 1999)

    Google Scholar 

  15. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  16. S. Cai, B. Bhushan, Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid mediated contacts, Mater. Sci. Eng. R 61, 78–106 (2008)

    Google Scholar 

  17. B. Bhushan, Contact mechanics of rough surfaces in tribology: Multiple asperity contact, Tribol. Lett. 4, 1–35 (1998)

    Google Scholar 

  18. B. Bhushan (Ed.), Modern Tribology Handbook (CRC, Boca Raton, 2001)

    Google Scholar 

  19. B. Bhushan, Adhesion and stiction, Mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol. B 21, 2262–2296 (2003)

    Google Scholar 

  20. B. Bhushan, Z. Zhao, Macro- and microscale tribological studies of molecularly-thick boundary layers of perfluoropolyether lubricants for magnetic thin-film rigid disks. J. Inf. Storage Proc. Syst. 1, 1–21 (1999)

    Google Scholar 

  21. B. Bhushan, W. Peng, Contact mechanics of multilayered rough surfaces. Appl. Mech. Rev. 55, 435–480 (2002)

    Google Scholar 

  22. B. Bhushan, Y.C. Jung, Wetting, adhesion, and friction of superhydrophobic and hydrophilic leaves and fabricated micro-/nanopatterned surfaces. J. Phys. D 20, 225010–1–2250–24 (2008)

    Google Scholar 

  23. M. Nosonovsky, B. Bhushan, Roughness-induced superhydrophobicity: A way to design nonadhesive surfaces, J. Phys. D 20, 225009–1–225009–30 (2008)

    Google Scholar 

  24. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, Part I (Clarendon, Oxford, 1950)

    Google Scholar 

  25. W.A. Zisman, Friction, durability and wettability properties of monomolecular films on solids. In: Friction and Wear, ed. by R. Davies (Elsevier, Amsterdam 1959) pp. 110–148

    Google Scholar 

  26. V.N. Koinkar, B. Bhushan, Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy. J. Vac. Sci. Technol. A 14, 2378–2391 (1996)

    Google Scholar 

  27. H. Liu, B. Bhushan, Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)

    Google Scholar 

  28. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly (Academic, San Diego, 1991)

    Google Scholar 

  29. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    Google Scholar 

  30. H. Hansma, F. Motamedi, P. Smith, P. Hansma, J.C. Wittman, Molecular resolution of thin, highly oriented poly (tetrafluoroethylene) films with the atomic force microscope. Polym. Commun. 33, 647–649 (1992)

    Google Scholar 

  31. L. Scandella, A. Schumacher, N. Kruse, R. Prins, E. Meyer, R. Luethi, L. Howald, M. Scherge, J.A. Schaefer, Surface modification and mechanical properties of bulk silicon. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 529–537

    Google Scholar 

  32. B. Bhushan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments. Diam. Relat. Mater. 8, 1985–2015 (1999)

    Google Scholar 

  33. A. Erdemir, C. Donnet, Tribology of diamond, diamond-like carbon, and related films. In: Modern Tribology Handbook, Vol. 2, ed. by B. Bhushan (CRC, Boca Raton, 2001) pp. 871–908

    Google Scholar 

  34. V.F. Dorfman, Diamond-like nanocomposites (DLN). Thin Solid Films 212, 267–273 (1992)

    Google Scholar 

  35. M. Grischke, K. Bewilogua, K. Trojan, H. Dimigan, Application-oriented modification of deposition process for diamond-like-carbon based coatings. Surf. Coat. Technol. 74/75, 739–745 (1995)

    Google Scholar 

  36. R.S. Butter, D.R. Waterman, A.H. Lettington, R.T. Ramos, E.J. Fordham, Production and wetting properties of fluorinated diamond-like carbon coatings. Thin Solid Films 311, 107–113 (1997)

    Google Scholar 

  37. M. Grischke, A. Hieke, F. Morgenweck, H. Dimigan, Variation of the wettability of DLC coatings by network modification using silicon and oxygen. Diam. Relat. Mater. 7, 454–458 (1998)

    Google Scholar 

  38. C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, M. Belin, Wear-resistant fluorinated diamond-like carbon films. Surf. Coat. Technol. 94-95, 531–536 (1997)

    Google Scholar 

  39. D.J. Kester, C.L. Brodbeck, I.L. Singer, A. Kyriakopoulos, Sliding wear behavior of diamond-like nanocomposite coatings. Surf. Coat. Technol. 113, 268–273 (1999)

    Google Scholar 

  40. H. Liu, B. Bhushan, Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus. J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Google Scholar 

  41. B. Bhushan, H. Liu, S.M. Hsu, Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects. ASME J. Tribol. 126, 583–590 (2004)

    Google Scholar 

  42. J.A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, D.K. Schwartz, Langmuir–Blodgett films. Science 263, 1726–1733 (1994)

    Google Scholar 

  43. J. Tian, Y. Xia, G.M. Whitesides, Microcontact printing of SAMs. In: Thin Films – Self-Assembled Monolayers of Thiols, Vol. 24, ed. by A. Ulman (Academic, San Diego, 1998) pp. 227–254

    Google Scholar 

  44. Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998)

    Google Scholar 

  45. A. Kumar, G.M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993)

    Google Scholar 

  46. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nm resolution. Science 272, 85–87 (1996)

    Google Scholar 

  47. Y. Xia, E. Kim, X.M. Zhao, J.A. Rogers, M. Prentiss, G.M. Whitesides, Complex optical surfaces formed by replica molding against elastomeric masters. Science 273, 347–349 (1996)

    Google Scholar 

  48. L.J. Hornbeck, The DMD projection display chip: A MEMS-based technology. MRS Bulletin 26, 325–328 (2001)

    Google Scholar 

  49. M.R. Douglass, Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). 1998 Int. Reliab. Phys. Proc., presented at 36th Annu. Int. Reliab. Phys. Symp., Reno (1998)

    Google Scholar 

  50. H. Liu, B. Bhushan, Nanotribological characterization of digital micromirror devices using an atomic force microscope. Ultramicroscopy 100, 391–412 (2004)

    Google Scholar 

  51. H. Liu, B. Bhushan, Investigation of nanotribological and nanomechanical properties of the digital micromirror device by atomic force microscope. J. Vac. Sci. Technol. A 22, 1388–1396 (2004)

    Google Scholar 

  52. N.S. Tambe, B. Bhushan, Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates. Nanotechnology 16, 1549–1558 (2005)

    Google Scholar 

  53. B. Bhushan, M. Cichomski, E. Hoque, J.A. DeRose, P. Hoffmann, H.J. Mathieu, Nanotribological characterization of perfluoroalkylphosphonate self-assembled monolayers deposited on aluminum-coated silicon substrates. Microsyst. Technol. 12, 588–596 (2006)

    Google Scholar 

  54. E. Hoque, J.A. DeRose, P. Hoffmann, H.J. Mathieu, B. Bhushan, M. Cichomski, Phosphonate self-assembled monolayers on aluminum surfaces. J. Chem. Phys. 124, 174710 (2006)

    Google Scholar 

  55. E. Hoque, J.A. DeRose, G. Kulik, P. Hoffmann, H.J. Mathieu, B. Bhushan, Alkylphosphonate modified aluminum oxide surfaces. J. Phys. Chem. B 110, 10855–10861 (2006)

    Google Scholar 

  56. E. Hoque, J.A. DeRose, P. Hoffmann, B. Bhushan, H.J. Mathieu, Alkylperfluorosilane self-assembled monolayers on aluminum: A comparison with alkylphosphonate self-assembled monolayers. J. Phys. Chem. C 111, 3956–3962 (2007)

    Google Scholar 

  57. J.A. DeRose, E. Hoque, B. Bhushan, H.J. Mathieu, Characterization of perfluorodecanote self-assembled monolayers on aluminum and comparison of stability with phosphonate and siloxy self-assembled monolayers. Surf. Sci. 602, 1360–1367 (2008)

    Google Scholar 

  58. B. Bhushan, A.V. Kulkarni, V.N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin, Microtribological characterization of self-assembled and Langmuir–Blodgett monolayers by atomic and friction force microscopy. Langmuir 11, 3189–3198 (1995)

    Google Scholar 

  59. B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann, AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS. Ultramicroscopy 105, 176–188 (2005)

    Google Scholar 

  60. B. Bhushan, D. Hansford, K.K. Lee, Surface modification of silicon surfaces with vapor phase deposited ultrathin fluorosilane films for biomedical devices. J. Vac. Sci. Technol. A 24, 1197–1202 (2006)

    Google Scholar 

  61. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffmann, Nanotribological study of perfluorosilane SAMs for anti-stiction and low wear. J. Vac. Sci. Technol. B 23, 995–1003 (2005)

    Google Scholar 

  62. K.K. Lee, B. Bhushan, D. Hansford, Nanotribological characterization of perfluoropolymer thin films for bioMEMS applications. J. Vac. Sci. Technol. A 23, 804–810 (2005)

    Google Scholar 

  63. Z. Tao, B. Bhushan, Degradation mechanisms and environmental effects on perfluoropolyether self assembled monolayers and diamond-like carbon films. Langmuir 21, 2391–2399 (2005)

    Google Scholar 

  64. Z. Tao, B. Bhushan, Surface modification of AFM silicon probes for adhesion and wear reduction. Tribol. Lett. 21, 1–16 (2006)

    Google Scholar 

  65. E. Hoque, J.A. DeRose, P. Hoffmann, B. Bhushan, H.J. Mathieu, Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilazation of copper. J. Chem. Phys. 126, 114706 (2007)

    Google Scholar 

  66. E. Hoque, J.A. DeRose, B. Bhushan, H.J. Mathieu, Self-assembled monolayers on aluminum and copper oxide surfaces: Surface and interface characteristics, nanotribological properties, and chemical stability. In: Applied Scanning Probe Methods IX, NanoScience and Technology, ed. by B. Bhushan, H. Fuchs, M. Tomitori (Springer, Berlin, 2008) pp. 235–281

    Google Scholar 

  67. E. Hoque, J.A. DeRose, B. Bhushan, K.W. Hipps, Low adhesion, nonwetting phosphonate self-assembled monolayer films formed on copper oxide surfaces. Ultramicroscopy 109, 1015–1022 (2009)

    Google Scholar 

  68. A. Manz, H. Becker (Eds.), Microsystem Technology in Chemistry and Life Sciences (Springer, Heidelberg, 1998)

    Google Scholar 

  69. J. Cheng, L.J. Krica (Eds.), Biochip Technology (Harwood Academic, New York, 2001)

    Google Scholar 

  70. M.J. Heller, A. Guttman (Eds.), Integrated Microfabricated Biodevices (Marcel, New York, 2001)

    Google Scholar 

  71. A. van den Berg (Ed.), Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam, 2003)

    Google Scholar 

  72. D.R. Tokachichu, B. Bhushan, Bioadhesion of polymers for BioMEMS. IEEE Trans. Nanotechnol. 5, 228–231 (2006)

    Google Scholar 

  73. B. Bhushan, M. Cichomski, Nanotribological characterization of vapor phase deposited fluorosilane self-assembled monolayers deposited on polydimethylsiloxane surfaces for biomedical micro-/nanodevices. J. Vac. Sci. Technol. A 25, 1285–1293 (2007)

    Google Scholar 

  74. M. Hein, L.R. Best, S. Pattison, S. Arena, Introduction to General, Organic, and Biochemistry, 6th edn. (Brooks/Cole, Pacific Grove, 1997)

    Google Scholar 

  75. J.R. Mohrig, C.N. Hammond, T.C. Morrill, D.C. Neckers, Experimental Organic Chemistry (Freeman, New York, 1998)

    Google Scholar 

  76. A. Ulman (Ed.), Characterization of Organic Thin Films (Butterworth Heinemann, Boston, 1995)

    Google Scholar 

  77. C. Jung, O. Dannenberger, Y. Xu, M. Buck, M. Grunze, Self-assembled monolayers from organosulfur compounds: A comparison between sulfides, disulfides, and thiols, Langmuir 14, 1103–1107 (1998)

    Google Scholar 

  78. W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser, M. Grunze, Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography. Appl. Phys. Lett. 75, 2401–2403 (1999)

    Google Scholar 

  79. B. Bhushan, H. Liu, Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by atomic force microscopy. Phys. Rev. B 63, 245412–1–245412–11 (2001)

    Google Scholar 

  80. H. Liu, B. Bhushan, W. Eck, V. Stadler, Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy. J. Vac. Sci. Technol. A 19, 1234–1240 (2001)

    Google Scholar 

  81. H. Liu, B. Bhushan, Investigation of nanotribological properties of alkylthiol and biphenyl thiol self-assembled monolayers. Ultramicroscopy 91, 185–202 (2002)

    Google Scholar 

  82. S.R. Wasserman, Y.T. Tao, G.M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkylchlorosilanes on silicon substrates. Langmuir 5, 1074–1089 (1989)

    Google Scholar 

  83. J. Ruhe, V.J. Novotny, K.K. Kanazawa, T. Clarke, G.B. Street, Structure and tribological properties of ultrathin alkylsilane films chemisorbed to solid surfaces. Langmuir 9, 2383–2388 (1993)

    Google Scholar 

  84. V. DePalma, N. Tillman, Friction and wear of self-assembled tricholosilane monolayer films on silicon. Langmuir 5, 868–872 (1989)

    Google Scholar 

  85. M.T. McDermott, J.B.D. Green, M.D. Porter, Scanning force microscopic exploration of the lubrication capabilities of n-alkanethiolate monolayers chemisorbed at gold: Structural basis of microscopic friction and wear. Langmuir 13, 2504–2510 (1997)

    Google Scholar 

  86. X. Xiao, J. Hu, D.H. Charych, M. Salmeron, Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 12, 235–237 (1996)

    Google Scholar 

  87. A. Lio, D.H. Charych, M. Salmeron, Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiol on gold and alkylsilanes on mica. J. Phys. Chem. B 101, 3800–3805 (1997)

    Google Scholar 

  88. H. Schönherr, G.J. Vancso, Tribological properties of self-assembled monolayers of fluorocarbon and hydrocarbon thiols and disulfides on Au(111) studied by scanning force microscopy. Mater. Sci. Eng. C 8/9, 243–249 (1999)

    Google Scholar 

  89. V.V. Tsukruk, V.N. Bliznyuk, Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces. Langmuir 14, 446–455 (1998)

    Google Scholar 

  90. V.V. Tsukruk, T. Nguyen, M. Lemieux, J. Hazel, W.H. Weber, V.V. Shevchenko, N. Klimenko, E. Sheludko, Tribological properties of modified MEMS surfaces. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht, 1998) pp. 607–614

    Google Scholar 

  91. M. Fujihira, Y. Tani, M. Furugori, U. Akiba, Y. Okabe, Chemical force microscopy of self-assembled monolayers on sputtered gold films patterned by phase separation. Ultramicroscopy 86, 63–73 (2001)

    Google Scholar 

  92. H. Liu, B. Bhushan, Orientation and relocation of biphenyl thiol self-assembled monolayers. Ultramicroscopy 91, 177–183 (2002)

    Google Scholar 

  93. R.J. Good, C.J.V. Oss, Modern Approaches to Wettability – Theory and Applications (Plenum, New York 1992)

    Google Scholar 

  94. M.H.V.C. Adão, B.J.V. Saramago, A.C. Fernandes, Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements. J. Colloid Interface Sci. 217, 94–106 (1999)

    Google Scholar 

  95. N.S. Tambe, B. Bhushan, A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities. J. Phys. D Appl. Phys. 38, 764–773 (2005)

    Google Scholar 

  96. B. Bhushan, J. Ruan, Tribological performance of thin film amorphous carbon overcoats for magnetic recording disks in various environments. Surf. Coat. Technol. 68/69, 644–650 (1994)

    Google Scholar 

  97. B. Bhushan, L. Yang, C. Gao, S. Suri, R.A. Miller, B. Marchon, Friction and wear studies of magnetic thin film rigid disks with glass-ceramic, glass and aluminum-magnesium substrates. Wear 190, 44–59 (1995)

    Google Scholar 

  98. Y.F. Miura, M. Takenga, T. Koini, M. Graupe, N. Garg, R.L. Graham, T.R. Lee, Wettability of self-assembled monolayers generated from CF3-terminated alkanethiols on gold. Langmuir 14, 5821–5825 (1998)

    Google Scholar 

  99. M. Ratajczak-Sitarz, A. Katrusiak, Z. Kaluski, J. Garbarczyk, 4,4’-Biphenyldithiol, Acta Crystallogr. C 43, 2389–2391 (1987)

    Google Scholar 

  100. J.I. Siepman, I.R. McDonald, Monte Carlo simulation of the mechanical relaxation of a self-assembled monolayer, Phys. Rev. Lett. 70, 453–456 (1993)

    Google Scholar 

  101. M. Garcia-Parajo, C. Longo, J. Servat, P. Gorostiza, F. Sanz, Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: Contact and tapping modes. Langmuir 13, 2333–2339 (1997)

    Google Scholar 

  102. D. DeVecchio, B. Bhushan, Localized surface elasticity measurements using an atomic force microscope. Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Google Scholar 

  103. E. Barrena, S. Kopta, D.F. Ogletree, D.H. Charych, M. Salmeron, Relationship between friction and molecular structure: Alkysilane lubricant films under pressure. Phys. Rev. Lett. 82, 2880–2883 (1999)

    Google Scholar 

  104. N. Eustathopoulos, M. Nicholas, B. Drevet, Wettability at High Temperature (Pergamon, Amsterdam 1999)

    Google Scholar 

  105. S. Ren, S. Yang, Y. Zhao, T. Yu, X. Xiao, Preparation and characterization of ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films. Surf. Sci. 546, 64–74 (2003)

    Google Scholar 

  106. E.S. Clark, The molecular conformations of polytetrafluoroethylene: Forms II and IV, Polymer 40, 4659–4665 (1999)

    Google Scholar 

  107. D.R. Lide, CRC Handbook of Chemistry and Physics, 85th edn. (CRC, Boca Raton, 2004)

    Google Scholar 

  108. W.D. Callister, Materials Science and Engineering, 4th edn. (Wiley, New York, 1997)

    Google Scholar 

  109. N.S. Tambe, B. Bhushan, Friction model for velocity dependence of nanoscale friction, Nanotechnology 16, 2309–2324 (2005)

    Google Scholar 

  110. T. Hoshino, Adsorption of atomic and molecular oxygen and desorption of silicon monoxide on Si(111) surfaces. Phys. Rev. B 59, 2332–2340 (1999)

    Google Scholar 

  111. T.L. Cottrell, The Strength of Chemical Bonds, 2nd edn. (Butterworth, London, 1958)

    Google Scholar 

  112. S.C. Clear, P.F. Nealey, The effect of chain density on the frictional behavior of surfaces modified with alkylsilanes and immersed in n-alcohols, J. Chem. Phys. 114, 2802–2811 (2001)

    Google Scholar 

  113. N.S. Tambe, B. Bhushan, Durability studies of micro/nanoelectromechanical systems materials, coatings and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope. J. Vac. Sci. Technol. A 23, 830–835 (2005)

    Google Scholar 

  114. Anonymous, Properties of Silicon, EMIS Data Rev. Ser., Vol. 4 (INSPEC Institution of Electrical Engineers, London 1988)

    Google Scholar 

  115. Anonymous, MEMS Materials Database (MEMS and Nanotechnology Clearinghouse, Reston 2002), http://www.memsnet.org/material/

    Google Scholar 

  116. F. Tian, X. Xiao, M.M.T. Loy, C. Wang, C. Bai, Humidity and temperature effect on frictional properties of mica and alkylsilane monolayer self-assembled on mica. Langmuir 15, 244–249 (1999)

    Google Scholar 

  117. R.D. Chambers, Fluorine in Organic Chemistry (Wiley, New York, 1973)

    Google Scholar 

  118. B.A. Sexton, A.E. Hughes, A comparison of weak molecular adsorption of organic-molecules on clean copper and platinum surfaces. Surf. Sci. 140, 227–248 (1984)

    Google Scholar 

  119. L.H. Dubois, B.R. Zegarski, R.G. Nuzzo, Fundamental studies of microscopic wetting on organics surfaces, 2. Interaction of secondary adsorbates with chemically textured organic monolayers. J. Am. Chem. Soc. 112, 570–579 (1990)

    Google Scholar 

  120. M.C. McMaster, S.L.M. Schroeder, R.J. Madix, Molecular propane adsorption dynamics on Pt(110)-(1x2). Surf. Sci. 297, 253–271 (1993)

    Google Scholar 

  121. G.J. Kluth, M. Sander, M.M. Sung, R. Maboudian, Study of the desorption mechanism of alkylsiloxane self-assembled monolayers through isotopic labeling and high resolution electron energy-loss spectroscopy experiments. J. Vac. Sci. Technol. A 16, 932–936 (1998)

    Google Scholar 

  122. H.K. Kim, J.P. Lee, C.R. Park, H.T. Kwak, M.M. Sung, Thermal decomposition of alkylsiloxane self-assembled monolayers in air. J. Phys. Chem. B 107, 4348–4351 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2011). Self-Assembled Monolayers for Nanotribology and Surface Protection. In: Bhushan, B. (eds) Nanotribology and Nanomechanics II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15263-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15263-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15262-7

  • Online ISBN: 978-3-642-15263-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics