Skip to main content

Absolute and Relative Gravimetry

  • Chapter
  • First Online:
Sciences of Geodesy - I

Abstract

Absolute and relative gravimetry allow the determination of gravity acceleration, usually just called gravity, for specific positions as well as the detection of gravity changes with time at a given location. For high-accuracy demands, the geometrical position of a gravity point has to be defined very accurately, e.g. in geodynamic research projects, at a height along the vertical above a ground mark. Geodetic networks with local, regional or global extent can be surveyed to monitor short-term and long-term gravity variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew, D.C. (1997) NLOADF: a program for computing ocean-tide loading. J. Geophys. Res., 102(B3), 5109–5110

    Article  Google Scholar 

  • Ågren, J. and Svensson, R. (2007) Postglacial land uplift model and system definition for the new Swedish height system RH 2000. Reports in Geodesy and Geographical Information Systems, Lantmateriet, Gävle, 123 pp

    Google Scholar 

  • Bilker-Koivula, M., Mäkinen, J., Timmen, L., Gitlein, O., Klopping, F. and Falk, R. (2008) Repeated absolute gravity measurements in Finland. In: Peshekhonov, V.G. (ed) Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2007). Proceedings of International Symposium, Elektropribor, St. Petersburg, pp. 147–151

    Google Scholar 

  • BIPM (2006) Bureau international des poids et measures, Le Système international d’unités (SI) – The International System of Units (SI). 8e édition, 2006. Édité par le BIPM, Pavillon de Breteuil, F-92312 Sèvres Cedex, France

    Google Scholar 

  • Boedecker, G. and Flury, J. (1995) International Absolute Gravity Basestation Network IAGBN, Catalogue of stations and observations. Report of the IAG International Gravity Commission, IGC-Working Group 2, “World Gravity Standards”, available at the Bureau Gravimetrique International, Toulouse

    Google Scholar 

  • Boedecker, G. and Fritzer, Th. (1986) International Absolute Gravity Basestation Network. Veröff. Bayer. Komm. für die Internat. Erdmessung der Bayer. Akad. d. Wissensch., Astron.-Geod. Arb. 47, München

    Google Scholar 

  • Boulanger, Yu., Faller, J., Groten, E., Arnautov, G., Becker, M., Bernard, B., Cannizzo, L., Cerutti, G., Courtier, N., Feng Youg-Yuan, Friederich, J., Guo You-Guang, Hanada, H., Huang Da-Lun, Kalish, E., Klopping, F., Li De-Xi, Liard, J., Mäkinen, J., Marson, I., Ooe, M., Peter, G., Röder, R., Ruess, D., Sakuma, A., Schnüll, M., Stus, F., Scheglov, S., Tarasuk, W., Timmen, L., Torge, W., Tsubokawa, T., Tsuruta, S., Vänskä, A. and Zhang Guang-Yuan (1991) Results of the 3rd International Comparison of Absolute Gravimeters in Sèvres 1989. Bur. Grav. Int., Bull. d’Inf., 68, 24–44, Toulouse

    Google Scholar 

  • Carter, W.E., Aubrey, D.G., Baker, T., Boucher, C., LeProvost, C., Pugh, D., Peltier, W.R., Zumberge, M., Rapp, R.H., Schutz, R.E., Emery, K.O. and Enfield, D.B. (1989) Geodetic fixing of tide gauge bench marks. Woods Hole Oceanographic Institution Report WHOI-89-31/CRC-89-5, Woods Hole

    Google Scholar 

  • Carter, W.E., Peter, G., Sasagawa, G.S., Klopping, F.J., Berstis, K.A., Hilt, R.L., Nelson, P., Christy, G.L., Niebauer, T.M., Hollander, W., Seeger, H., Richter, B., Wilmes, H. and Lothammer, A. (1994) New gravity meter improves measurements. EOS, Trans. Am. Geophys. Union, 75(08), 90–92

    Article  Google Scholar 

  • Cartwright, D.E. and Edden, A.C. (1973) Corrected tables of tidal harmonics. Geophys.J. R. Astr. Soc., 33, 253–264

    Article  Google Scholar 

  • Cartwright, D.E. and Tayler, R.J. (1971) New computations of the tide-generating potential. Geophys. J. R. Astr. Soc., 23, 45–74

    Article  Google Scholar 

  • Cook, A.H. (1965) The absolute determination of the acceleration due to gravity. Metrologia, 1, 84–114

    Article  Google Scholar 

  • Dehant, V. (1987) Tidal parameters for an inelastic Earth. Phys. Earth Planet. Inter., 49, 97–116

    Article  Google Scholar 

  • Doodson, A.T. (1921) The harmonic development of the tide-generating potential. Proc. R. Soc. (London), Series A 100, 306–328. Reprint in Int. Hydrographic Revue 31, Monaco 1954

    Google Scholar 

  • Dziewonski, A.M. and Anderson, D.L. (1981) Preliminary reference earth model (PREM). Phys. Earth Planet. Int., 25, 297–356

    Article  Google Scholar 

  • Ekman, M. and Mäkinen, J. (1996) Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophys. J. Int., 126, 229–234

    Article  Google Scholar 

  • Everaerts, M., Lambot, Ph., Van Hoolst, T., van Ruymbeke, M. and Ducarme, B. (2002) First order gravity network of Belgium. Bur. Grav. Int., Bull. d’Inf., 90, 27–42, Toulouse

    Google Scholar 

  • Falk, R. (1995) Erste Erfahrungen mit dem Automatischen Gravimeter Scintrex CG-3 M Autograv. Zeitschrift für Vermessungswesen, Verlag Wittwer, Stuttgart, Heft 1, 26–34

    Google Scholar 

  • Faller, J.E., Guo, Y.G., Geschwind, J., Niebauer, T.M., Rinker, R.L. and Xue, J. (1983) The JILA portable absolute gravity apparatus. Bur. Grav. Int., Bull. d’Inf., 53, 87–97, Toulouse

    Google Scholar 

  • Francis, O. and van Dam, T. (2006) Analysis of results of the International Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2003. Cahiers du Centre Européen de Géodynamique et de Séismologie, 26, 1–23, Luxembourg

    Google Scholar 

  • Francis, O., van Dam, T., Germak, A., Amalvict, M., Bayer, R., Bilker-Koivula, M., Calvo, M., D’Agostino, G.-C., Dell’Acqua, T., Engfeldt, A., Faccia, R., Falk, R., Gitlein, O., Fernandez, Gjevestad, J., Hinderer, J., Jones, Kostelecky, J., Le Moigne, N., Luck, B., Mäkinen, J., McLaughlin, D., Olszak, T., Olsson, P., Pachuta, A., Palinkas, V., Pettersen, B., Pujol, R., Prutkin, I., Quagliotti, D., Reudink, R., Rothleitner, C., Ruess, D., Shen, C., Smith, V., Svitlov, S., Timmen, L., Ulrich, C., Van Camp, M., Walo, J., Wang, L., Wilmes, H. and Xing, L. (2010) Results of the European Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2007. Proceedings of the IAG Symposium on Gravity, Geoid and Earth Observations 2008, Chania, Crete, Greece, June 2008, Springer (accepted for publication)

    Google Scholar 

  • Gitlein, O. (2009) Absolutgravimetrische Bestimmung der Fennoskandischen Landhebung mit dem FG5-220. Dissertation, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover (im Review-Prozess)

    Google Scholar 

  • Gitlein, O. and Timmen, L. (2006) Atmospheric mass flow reduction for terrestrial absolute gravimetry in the Fennoscandian land uplift network. In: Tregoning, P. and Rizos, C. (eds) Dynamic Planet. IAG Symposium 130, Springer, Berlin, pp. 461–466

    Google Scholar 

  • Gitlein, O., Timmen, L., Müller, J., Denker, H., Mäkinen, J., Bilker-Koivula, M., Pettersen, B.R., Lysaker, D.I., Svendsen, J.G.G., Wilmes, H., Falk, R., Reinhold, A., Hoppe, W., Scherneck, H.-G., Engen, B., Omang, O.C.D., Engfeldt, A., Lilje, M., Strykowski, G. and Forsberg, R. (2008) Observing absolute gravity acceleration in the Fennoscandian land uplift area. In: Peshekhonov, V.G. (ed) Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2007). Proceedings of the International Symposium. Elektropribor, St. Petersburg, pp. 175–180

    Google Scholar 

  • Hagedoorn, J.M., Wolf, D. and Martinec, Z. (2007) An estimate of global mean sea-level inferred from tide-gauge measurements using glacial-isostatic models consistent with the relative sea-level record. Pure Appl. Geophys., 164, 791–818, Birkhäuser Verlag, Basel

    Article  Google Scholar 

  • Hartmann, T. and Wenzel, H.-G. (1995) The HW95 tidal potential catalogue. Geophys. Res. Lett., 22, 3553–3556

    Article  Google Scholar 

  • Hugill, A.L. (1988) The new Scintrex CG-3 Automated Gravity Meter: description and test results. Paper presented at the ASEG/SEG Conference, February 1988. Adelaide

    Google Scholar 

  • IGC (1988) International Absolute Gravity Basestation Network (IAGBN), Absolute Gravity Observations, Data Processing Standards & Station Documentation (Int. Grav. Com. -WGII: World Gravity Standards). Bur. Grav. Int., Bull. d’Inf., 63, 51–57, Toulouse

    Google Scholar 

  • Ilk, K.H., Flury, J., Rummel, R., Schwintzer, P., Bosch, W., Haas, C., Schröter, J., Stammer, D., Zahel, W., Miller, H., Dietrich, R., Huybrechts, P., Schmeling, H., Wolf, D., Götze, H.J., Riegger, J., Bardossy, A., Güntner, A. and Gruber, Th. (2005) Mass transport and mass distribution in the Earth system – Contribution of the new generation of satellite gravity and altimetry missions to geosciences. GOCE Projektbüro, TU München und GFZ Potsdam

    Google Scholar 

  • Jentzsch, G. (1997) Earth tides and ocean tidal loading. In: Wilhelm, H., Zürn, W. and Wenzel, H.-G. (eds) Tidal Phenomena. Lecture Notes in Earth Sciences, Vol. 66. Springer, Heidelberg, pp. 145–171

    Google Scholar 

  • Jentzsch, G. (2008) The automated Burris Gravity Meter – a new instrument using an old principle. In: Peshekhonov, V.G. (ed) Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2007). Proceedings of the International Symposium. Elektropribor, St. Petersburg, pp. 21–28

    Google Scholar 

  • Jousset, M., van Ruymbeke, M., Bonvalot, S. and Diament, M. (1995) Performance of two Scintrex CG3M instruments at the Fourth International Comparison of Absolute Gravimeters. Metrologia, Sèvres, 32, 231–244

    Article  Google Scholar 

  • Kanngieser, E., Kummer, K., Torge, W. and Wenzel, H.-G. (1983) Das Gravimeter Eichsystem Hannover. Wiss. Arb. d. Fachrichtung Verm.wesen der Univ. Hannover, Nr. 120

    Google Scholar 

  • Klemann, V. (2004) Linear gravity variations for the IfE absolute gravity stations in Fennoscandia predicted by geophysical GIA modelling. Personal communication, Deutsches GeoForschungsZentrum (GFZ), Potsdam

    Google Scholar 

  • Krieg, L.A. (1981) Mathematical modelling of the behaviour of the LaCoste and Romberg "G" gravity meter for use in gravity network adjustments and data analyses. Reports of the Department of Civil and Environmental Engineering and Geodetic Science, Geodetic Science and Surveying, The Ohio State University, Columbus, 321

    Google Scholar 

  • Lambeck, K., Smither, C. and Ekman, M. (1998) Tests of glacial rebound models for Fennoscandinavia based on instrumented sea- and lake-level records. Geophys. J. Int., 135, 375–387

    Article  Google Scholar 

  • Lambert, A., Courtier, N., Sasagawa, G.S., Klopping, F., Winester, D., James, T.S. and Liard, J.O. (2001) New constraints on Laurentide Postglacial rebound from absolute gravity measurements. Geophys. Res. Lett., 28, 2109–2211

    Article  Google Scholar 

  • Lambert, A., James, T.S., Liard, J.O. and Coutier, N. (1996) The role and capability of absolute gravity measurements in determining the temporal variations in the earth’s gravity field. IAG Symposium 116. Springer, Berlin, pp. 20–29

    Book  Google Scholar 

  • Liard, J. and Gagnon, C. (2002) The new A-10 absolute gravimeter at the 2001 International Comparison of Absolute Gravimeters. Metrologia, 39, 477–483

    Article  Google Scholar 

  • Mäkinen, J., Amalvict, M., Shibuya, K. and Fukuda, Y. (2007) Absolute gravimetry in Antarctica: status and prospects. J Geodynamics, 43, 339–357

    Article  Google Scholar 

  • Mäkinen, J., Engfeldt, A., Harrson, B.G., Ruotsalainen H., Strykowski, G., Oja, T. and Wolf, D. (2004) The Fennoscandian Land Uplift Gravity Lines 1966–2003. Proceedings (CD publ.) of the IAG Symposium Gravity, Geoid and Space Missions (GGSM2004), Porto, 2004

    Google Scholar 

  • Mäkinen, J. and Tattari, S. (1988) Soil moisture and groundwater: two sources of gravity variations. Bur. Grav. Int., Bull. d’Inf., 62, 103–110, Toulouse

    Google Scholar 

  • Marson, I., Faller, J.E., Cerutti, G., De Maria, P., Chartier, J.-M., Robertsson, L., Vitushkin, L., Friederich, J., Krauterbluth, K., Stizza, D., Liard, J., Gagnon, C., Lothhammer, A., Wilmes, H., Mäkinen, J., Murakami, M., Rehren, F., Schnüll, M., Ruess, D. and Sasagawa, G.S. (1995) Fourth international comparison of absolute gravimeters. Metrologia, 32, 137–144

    Article  Google Scholar 

  • Martinec, Z. (2000) Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys. J Int, 142, 117–141

    Article  Google Scholar 

  • Micro-g Solutions Inc. (1999) Operator’s manual, FG5 absolute gravimeter. Micro-g Solutions Inc, Erie

    Google Scholar 

  • Müller, J., Neumann-Redlin, M., Jarecki, F., Denker, H. and Gitlein, O. (2006) Gravity changes in northern Europe as observed by GRACE. In: Tregoning, P. and Rizos, C. (eds) Dynamic Planet. IAG Symposium 130. Springer, Berlin, pp. 523–257

    Google Scholar 

  • Nagornyi, V.D. (1995) A new approach to absolute gravimeter analysis. Metrologia, 32, 201–208

    Article  Google Scholar 

  • Niebauer, T.M. (1987) New absolute gravity instruments for physics and geophysics. Ph.D. thesis, University of Colorado, Department of Physics, Boulder

    Google Scholar 

  • Niebauer, T.M., Klopping, F.G., Bilson, R. and Brown, J.M. (1999) The new A10 absolute field gravimeter. EOS Trans. AGU, 80(17), Spring Meet. Suppl. S85

    Google Scholar 

  • Niebauer, T.M., Sasagava, G.S., Faller, J.E., Hilt, R. and Klopping, F. (1995) A new generation of absolute gravimeters. Metrologia, 32, 159–180

    Article  Google Scholar 

  • Pearlman, M., Altamini, Z., Beck, N., Forsberg, R., Gurtner, W., Kenyon, S., Behrend, D., Lemoine, F.G., Ma, C., Noll, C.E., Pavlis, E.C., Malkin, Z., Moore, A.W., Webb, F.H., Neilan, R.E., Ries, J.C., Rothacher, M. and Willis, P. (2006) GGOS working group on ground networks and communications. In: Tregoning, P. and Rizos, C. (eds) Dynamic Planet. IAG Symposium, 130, Springer, Berlin, pp. 719–726

    Google Scholar 

  • Rapp, R.H. (1983) Tidal gravity computations based on recommendations of the Standard Earth Tide Committee. Bull. d’Inf., Marées Terrestres, 89, 5814–5819, Bruxelles

    Google Scholar 

  • Rehren, F. (1997) Relative gravity measurements with a Scintrex CG-3 M in the Gravimeter Calibration Systems Hannover and Hornisgrinde. Bur. Grav. Int., Bull. d’Inf., 81, 23–29, Toulouse

    Google Scholar 

  • Reigber, C. and Feissel, M. (1997) IERS missions, present and future. Report on the 1996 IERS Workshop. IERS Technical Note 22, Paris

    Google Scholar 

  • Robertsson, L., Francis, O., vanDam, T.M., Faller, J., Ruess, D., Delinte, J.-M., Vitushkin, L., Liard, J., Gagnon, C., Guo You Guang, Huang Da Lun, Fang Yong Yuan, Xu Jin Yi, Jeffries, G., Hopewell, H., Edge, R., Robinson, I., Kibble, B., Mäkinen, J., Hinderer, J., Amalvict, M., Luck, B., Wilmes, H., Rehren, F., Schmidt, K., Schnüll, M., Cerutti, G., Germak, A., Zabek, Z., Pachuta, A., Arnautov, G., Kalish, E., Stus, Y., Stizza, D., Friederich, J., Chartier, J.-M. and Marson, I. (2001) Results from the Fifth International Comparison of Absolute Gravimeters, ICAG97. Metrologia, 38, 71–78

    Article  Google Scholar 

  • Röder, R.H., Schnüll, M. and Wenzel, H.-G. (1985) Gravimetry with an electrostatic feedback system. Bur. Grav. Int., Bull. d’Inf., 57, 72–81, Toulouse

    Google Scholar 

  • Röder, R.H., Schnüll, M. and Wenzel, H.-G. (1988) SRW feedback for LaCoste-Romberg gravimeters with extended range. Bur. Grav. Int., Bull. d’Inf., 62, 46–50, Toulouse

    Google Scholar 

  • Romagnoli, C., Zerbini, S., Lago, L., Richter, B., Simon, D., Domenichini, F., Elmi, C. and Ghirotti, M. (2003) Influence of soil consolidation and thermal expansion effects on height and gravity variations. J Geodynamics, 35, 521–539

    Article  Google Scholar 

  • Schmerge, D. and Francis, O. (2006) Set standard deviations, repeatability and offset of absolute gravimeter A10-008. Metrologia, 43, 414–418

    Article  Google Scholar 

  • Schnüll, M., Röder, R.H. and Wenzel, H.-G. (1984) An improved electronic feedback for LaCoste-Romberg gravity meters. Bur. Grav. Int., Bull. d’Inf., 55, 27–36, Toulouse

    Google Scholar 

  • Schuh, H., Dill, R., Greiner-Mai, H., Kutterer, H., Müller, J., Nothnagel, A., Richter, B., Rothacher, M., Schreiber, U. and Soffel, M. (2003) Erdrotation und globale dynamische Prozesse. Mitteilungen des Bundesamtes für Kartographie und Geodäsie 32, 118 Seiten, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt a.M.

    Google Scholar 

  • Schwiderski, E. (1980) Ocean tides, part I: global ocean tidal equations; part II: a hydrodynamical interpolation model. Marine Geodesy, 3, 161–255

    Article  Google Scholar 

  • Scintrex (1998) CG-3/3 M Gravity Meter, User’s Guide, Concord

    Google Scholar 

  • Tamura, Y. (1987) A harmonic development of the tide generating potential. Bull. d’Inf., Marées Terrestres, 99, 6813–6855, Bruxelles

    Google Scholar 

  • Tapley, B., Bettadpur, S., Ries, J., Thompson, P. and Watkins, M. (2004) GRACE measurements of mass variability in the Earth System. Science, 305, 503–505

    Article  Google Scholar 

  • Timmen, L. (1994) Untersuchungen zur Modellbildung bei der Auswertung absoluter Schweremessungen. Wiss. Arb. d. Fachrichtung Verm.wesen der Univ. Hannover, 204, Dissertation am Institut für Erdmessung, Universität Hannover

    Google Scholar 

  • Timmen, L. (1996) Absolutgravimetrie – Aufgaben und Anwendungen. Zeitschrift für Vermessungswesen (ZfV) 121, 286–295, Wittwer, Stuttgart

    Google Scholar 

  • Timmen, L. (2003) Precise definition of the effective measurement height of free-fall absolute gravimeters. Metrologia, 40, 62–65

    Article  Google Scholar 

  • Timmen, L., Flury, J., Peters, T. and Gitlein, O. (2006a) A new absolute gravity base in the German Alps. In: Hvoždara, M. and Kohúh I. (eds) Contributions to Geophysics and Geodesy, 2nd Workshop on International Gravity Field Research (special issue) 36, 7–20, Slovak Academy of Sciences, Bratislava

    Google Scholar 

  • Timmen, L., Gitlein, O., Müller, J., Denker, H., Mäkinen, J., Bilker, M., Pettersen, B.R., Lysaker, D.I., Omang, O.C.D., Svendsen, J.G.G., Wilmes, H., Falk, R., Reinhold, A., Hoppe, W., Scherneck, H.-G., Engen, B., Harsson, B.G., Engfeldt, A., Lilje, M., Strykowski, G. and Forsberg, R. (2006b) Observing fennoscandian gravity change by absolute gravimetry. In: Sansò, F. and Gil A.J. (eds) Geodetic Deformation Monitoring: From Geophysical to Engineering Roles. IAG Symposium 131, Springer, Berlin, Heidelberg, pp. 193–199

    Chapter  Google Scholar 

  • Timmen, L. and Wenzel, H.-G. (1994) Improved gravimetric Earth tide parameters for station Hannover. Bull. d’Inf., Marées Terrestres, 119, 8834–8846, Bruxelles

    Google Scholar 

  • Timmen, L. and Wenzel, H.-G. (1995) Worldwide synthetic gravity tide parameters. In: Sünkel, H. and Marson, I. (eds) Gravity and Geoid. Proceedings of IAG Symposium, 113, Springer, Berlin, Heidelberg, pp. 92–101

    Chapter  Google Scholar 

  • Torge, W. (1989) Gravimetry. de-Gruyter, Berlin-New York

    Google Scholar 

  • Torge, W. (1990) Absolute gravimetry as an operational tool for geodynamic research. In: Brunner, F.K. and Rizos, C. (eds) Proceedings of the Ron Mather Symposium on Four-Dimensional Geodesy (Sydney, 1989). Lecture Notes in Earth Sciences, Vol. 29. Springer, Berlin, pp. 15–28

    Chapter  Google Scholar 

  • Torge, W. (1991) The present state of absolute gravimetry. Cahiers du Centre Européen de Géodynamique et de Séismologie, 3, 9–22, Luxembourg

    Google Scholar 

  • Torge, W. (1993) Gravimetry and tectonics. Publications of the Finnish Geodetic Institute (Geodesy and Geophysics) 115, 131–172, Helsinki

    Google Scholar 

  • Torge, W. (1998a) The changing role of gravity reference networks. In: Forsberg, R., Feissel, M. and Dietrich, R. (eds) Geodesy on the Move. IAG Symposium, 119, Springer, Berlin, Heidelberg, New York, etc., pp. 1–10

    Chapter  Google Scholar 

  • Torge, W. (1998b) 100 Jahre Schwerereferenznetze – klassische und moderne Konzeption. Zeitschrift für Vermessungswesen (ZfV), 123, 355–363, Wittwer, Stuttgart

    Google Scholar 

  • Torge, W., Falk, R., Franke, A., Reinhart, E., Richter, B., Sommer, M. and Wilmes, H. (1999) Das Deutsche Schweregrundnetz 1994 (DSGN94). DGK, B 309, München

    Google Scholar 

  • Torge, W., Röder, R.H., Schnüll, M., Wenzel, H.-G. and Faller, J.E. (1987) First results with the transportable absolute gravity meter JILAg-3. Bull. Géod., 61(2), 161–176, Springer, Berlin – Heidelberg

    Article  Google Scholar 

  • Wahr, J.M. (1981) Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys. J. Royal Astron. Soc., 64, 677–703, Oxford

    Article  Google Scholar 

  • Wahr, J. (1985) Deformation induced by polar motion. J. Geophys. Res., 92(B2), 1281–1286

    Google Scholar 

  • Wahr, J. and Velicogna, I. (2003) What might GRACE contribute to studies of post glacial rebound. Space Sci. Rev., 108, 319–330

    Article  Google Scholar 

  • Wang, R. (1997) Tidal response of the solid Earth. In: Wilhelm, H., Zürn, W. and Wenzel, H.-G. (eds) Tidal Phenomena. Lecture Notes in Earth Sciences, Vol. 66, Springer, Heidelberg, pp. 27–57

    Google Scholar 

  • Wenzel, H.-G. (1993) Programmsystem GRAV, programme manual, Geodetical Institute University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Wenzel, H.-G. (1997) Tide-generating potential for the Earth. In: Wilhelm, H., Zürn, W. and Wenzel, H.-G. (eds) Tidal Phenomena. Lecture Notes in Earth Sciences, Vol. 66. Springer, Heidelberg, pp. 9–26

    Google Scholar 

  • Williams, S.D.P., Baker. T.F. and Jeffries, G. (2001) Absolute gravity measurements at UK tide gauges. Geophys. Res. Lett., 28, 2317–2329.

    Article  Google Scholar 

  • Wilmes, H. and Falk, R. (2006) Bad Homburg – a regional comparison site for absolute gravity meters. Cahiers du Centre Européen de Géodynamique et de Séismologie, 26, 29–30, Luxembourg

    Google Scholar 

  • Wolf, D. (1993) The changing role of the lithosphere in models of glacial isostasy: a historical review. Global Planetary Change, 8, 95–106, Elsevier Science Publishers B.V., Amsterdam

    Article  Google Scholar 

  • Xu, J., Zhu, S., Lui, X., Torge, W., Röder, H., Schnüll, M. and Wenzel, H.-G. (1988) Vertical Gravimeter Calibration Line Wuhan/China. Bur. Grav. Int., Bull. d’Inf., 62, 119–125, Toulouse

    Google Scholar 

  • ZLS Corporation (2007) User guide: Automated Burris Gravity MeterTM and UltraGrav TM Control System, 67pp

    Google Scholar 

  • Zürn, W. and Wilhelm, H. (1984) Tides of the earth. Landolt-Börnstein, New Series V, 2, 259–299, Springer, Heidelberg-New-York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Timmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Timmen, L. (2010). Absolute and Relative Gravimetry. In: Xu, G. (eds) Sciences of Geodesy - I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11741-1_1

Download citation

Publish with us

Policies and ethics