Skip to main content

A Hybrid Approach for Designing the Control System for Underwater Vehicles

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

  • 1673 Accesses

Abstract

An approach in the form of an automatic evolutionary design environment for obtaining any type of control systems for underwater vehicles is presented. A specific case is considered in which this strategy is hybridized with Artificial Neural Networks. The design procedure is carried out by means of evolutionary techniques from a set of specifications using as a fitness evaluator an ad-hoc hydrodynamic simulator which includes the estimation of added mass and added inertia coefficients. The resulting design environment was used to construct the neural network based controllers of a submersible catamaran. Results of the application of the automatic design procedure and of the operation of the controllers thus obtained are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feng, Z., Allen, R.: Modeling of Subzero II, ISVR Technical Memorandum 880, Southampton, University of Southampton (2001)

    Google Scholar 

  2. Smallwood, D.A., Whitcomb, L.L.: Toward Model Based Trajectory Tracking of Underwater Robotic Vehicles: Theory and Simulation. In: 21th International Symposium on Unmanned Untethered Submersible Technology, Durham, NC, USA (2001)

    Google Scholar 

  3. Kim, T.W., Yuh, J.: A novel neuro-fuzzy controller for autonomous underwater vehicles. In: Proceedings of the IEE Int. Conf.on Robotics and Automation, May 21-26, pp. 2350–2355 (2001)

    Google Scholar 

  4. Yuh, J.: A neural net controller for underwater robotic vehicles. IEEE Journal of Oceanic Engineering 15(3), 161–166 (1990)

    Article  Google Scholar 

  5. Choi, S.K., Yuh, J., Takeshige, G.: Development of the Omnidirectional Intelligent Navigator. IEEE Robotics & Automation Mag. 2, 44–53 (1995)

    Article  Google Scholar 

  6. Kodogiannis, V.S.: Neural Network Adaptive Control for Underwater Robotic Systems. Mechatronics Group, Dep. of Computer Science. U Westmister, London U.K (2001)

    Google Scholar 

  7. Mills, D., Harris, C.J.: Neurofuzzy modeling and control of a six degree of freedom AUV. Prentice Hall, Helmel Hapmstead (1994)

    Google Scholar 

  8. Suto, T., Ura, T.: Unsupervised Learning System for Vehicle Guidance Constructed with Neural Networks. In: Proc. 8th International Symposium on Unmanned Untethered Submersible Technology, Durham, New Hampshire, pp. 222–230 (1993)

    Google Scholar 

  9. Lamas, A., Duro, R.J.: ADEUS: Integrating Advanced Simulators, Evolution and Cluster Computing for Autonomous Robot Design. In: Proceedings of the International Conference on Computational Intelligence, Robotics and Autonomous Systems, pp. 398–404 (2001)

    Google Scholar 

  10. Tuckerman, L.B.: Inertia Factors of Ellipsoid for Use in Airship Design. Report NACA Nº.210. National Advisory Committee for Aeronautics (1926)

    Google Scholar 

  11. Fernández Ibarz, J.: Modelo de simulación y control dinámico para un catamarán submarino con seis grados de libertad. PhD Thesis, Universidade Coruña, Spain (April 2003)

    Google Scholar 

  12. Fernández Ibarz, J., Lamas, A., López Peña, F.: Study of the Dynamic Stability of an Underwater Vehicle. In: Proceedings of the 8th International Conference on the Stability of Ships and Ocean Vehicles, Madrid, September 15-19, pp. 129–140 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lamas, A., Peña, F.L., Duro, R.J. (2009). A Hybrid Approach for Designing the Control System for Underwater Vehicles. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics