Skip to main content

Dirac Mixture Approximation for Nonlinear Stochastic Filtering

  • Chapter
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 24))

  • 1171 Accesses

Abstract

This work presents a filter for estimating the state of nonlinear dynamic systems. It is based on optimal recursive approximation the state densities by means of Dirac mixture functions in order to allow for a closed form solution of the prediction and filter step. The approximation approach is based on a systematic minimization of a distance measure and is hence optimal and deterministic. In contrast to non-deterministic methods we are able to determine the optimal number of components in the Dirac mixture. A further benefit of the proposed approach is the consideration of measurements during the approximation process in order to avoid parameter degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huber, M., Brunn, D., Hanebeck, U.D.: Closed-Form Prediction of Nonlinear Dynamic Systems by Means of Gaussian Mixture Approximation of the Transition Density. In: International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2006), Heidelberg, Deutschland. (2006) 98–103

    Google Scholar 

  2. Doucet, A., Freitas, N.D., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  3. Geweke, J.: Bayesian Inference in Econometric Models using Monte Carlo Integration. Econometrica 24 (1989) 1317–1399

    Article  MathSciNet  Google Scholar 

  4. Gordon, N.: Bayesian Methods for Tracking. PhD thesis, University of London (1993)

    Google Scholar 

  5. Julier, S., Uhlmann, J.: A New Extension of the Kalman Filter to Nonlinear Systems. In: Proceedings of SPIE AeroSense, 11th International Symposium on Aerospace/Defense Sensing, Simulation, and Controls, Orlando, FL. (1997)

    Google Scholar 

  6. Alspach, D.L., Sorenson, H.W.: Nonlinear Bayesian Estimation Using Gaussian Sum Approximation. IEEE Transactions on Automatic Control AC–17 (1972) 439–448

    Article  Google Scholar 

  7. Hanebeck, U.D., Briechle, K., Rauh, A.: Progressive Bayes: A New Framework for Nonlinear State Estimation. In: Proceedings of SPIE. Volume 5099., Orlando, Florida (2003) 256–267 AeroSense Symposium.

    Google Scholar 

  8. Schrempf, O.C., Brunn, D., Hanebeck, U.D.: Dirac Mixture Density Approximation Based on Minimization of the Weighted Cramér–von Mises Distance. In: Proceedings of the International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2006), Heidelberg, Germany. (2006) 512–517

    Google Scholar 

  9. Schrempf, O.C., Hanebeck, U.D.: Recursive Prediction of Stochastic Nonlinear Systems Based on Dirac Mixture Approximations. In: Proceedings of the American Control Conference (ACC ’07), New York City, USA. (2007)

    Google Scholar 

  10. Schrempf, O.C., Hanebeck, U.D.: A State Estimator for Nonlinear Stochastic Systems Based on Dirac Mixture Approximations. In: 4th Intl. Conference on Informatics in Control, Automation and Robotics (ICINCO 2007). Volume SPSMC., Angers, France (2007) 54–61

    Google Scholar 

  11. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics 22 (1951) 79–86

    Article  MATH  MathSciNet  Google Scholar 

  12. Boos, D.D.: Minimum Distance Estimators for Location and Goodness of Fit. Journal of the American Statistical association 76 (1981) 663–670

    Article  MATH  MathSciNet  Google Scholar 

  13. Bucy, R.S.: Bayes Theorem and Digital Realizations for Non-Linear Filters. Journal of Astronautical Sciences 17 (1969) 80–94

    Google Scholar 

  14. Schrempf, O.C., Brunn, D., Hanebeck, U.D.: Density Approximation Based on Dirac Mixtures with Regard to Nonlinear Estimation and Filtering. In: Proceedings of the 45th IEEE Conference on Decision and Control (CDC’06), San Diego, California, USA. (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrempf, O.C., Hanebeck, U.D. (2009). Dirac Mixture Approximation for Nonlinear Stochastic Filtering. In: Filipe, J., Cetto, J.A., Ferrier, JL. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85640-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85640-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85639-9

  • Online ISBN: 978-3-540-85640-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics