Skip to main content

Physiology and Biochemistry of the Aerobic Methane Oxidizing Bacteria

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Methanotrophic bacteria grow aerobically using methane as a source of carbon and energy. They are widespread in the environment and play an important role in oxidizing methane in the environment, thereby mitigating the effects of global warming by this potent greenhouse gas. Methane monooxygenases (MMOs), which are the enzymes that catalyze the oxidation of methane, especially, the catalytically versatile soluble MMO, can cooxidize a wide range of hydrocarbons and chlorinated hydrocarbons, and have great potential as biocatalysts for bioremediation and biocatalysis. Methanotrophs can also be used to make single-cell protein from methane. Recent isolation of novel groups of thermophilic, acidophilic methanotrophs has revealed that these bacteria can even grow under extreme environmental conditions. The availability of genome sequences of several methanotrophs now opens up possibilities of postgenomic studies to investigate the regulation of methane oxidation in the laboratory and in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony C (1982) The Biochemistry of Methylotrophs. New York:Academic Press.

    Google Scholar 

  • Anthony C, Williams P (2003) The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647: 18–23.

    PubMed  CAS  Google Scholar 

  • Baik MH, Newcomb M, Friesner RA, Lippard SJ (2003) Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem Rev 103: 2385–2419.

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian R, Rosenzweig AC (2008) Copper methanobactin: a molecule whose time has come. Curr Opinion Chem Eng 12: 245–249.

    Article  CAS  Google Scholar 

  • Borodina E, Nichol T, Dumont MG, Smith TJ, Murrell JC (2007) Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 73: 6460–6467.

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185: 2980–2987.

    Article  PubMed  CAS  Google Scholar 

  • Dalton H (2005) The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane oxidizing bacteria. Phil Trans Royal Soc London. Philos Trans R Soc Lond B Biol Sci 360: 1207–1222.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield P (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187: 4665–4667.

    Article  PubMed  CAS  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76: 223–241.

    Article  PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439–471.

    PubMed  CAS  Google Scholar 

  • Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE FEMS Microbiol Ecol 32: 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, Anthony C, Murrell JC (2005) Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol 13: 195–198.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74: 1305–1315.

    Article  PubMed  CAS  Google Scholar 

  • Meister M, Saum S, Alber BE, Fuchs G (2005) L-Malyl-Coenzyme A/(-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus. J Bacteriol 187: 1415–1425

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8: 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Murrell JC (2008) Life in the extreme: thermophilic methanotrophy. Trends Microbiol 16: 190–193.

    Article  PubMed  CAS  Google Scholar 

  • Shishkina VN, Trotsenko YA (1986) The levels of carbondioxide assimilation by methanotrophic bacteria Mikrobiologiya 55: 377–382.

    CAS  Google Scholar 

  • Smith TJ, Dalton H (2004) Biocatalysis by methane monooxygenase and its implications for the petroleum industry. Petroleum Biotechnology: Developments and Perspectives. 151: 177–192.

    Google Scholar 

  • Smith TJ, Murrell JC (2009) Methanotrophs: biotechnological potential and emerging applications. In: Encyclopedia of Industrial Biotechnology. M Flickinger (ed.). New York: Willey. In press.

    Google Scholar 

  • Strom T, Ferenci T, Quayle JR (1974) The carbon assimilation pathway of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium(OB3b). Biochem. J 144: 465–476.

    PubMed  CAS  Google Scholar 

  • Theisen AR, Murrell JC (2005) Facultative methanotrophs revisited. J Bacteriol 187: 4303–4305.

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methylotrophy. Adv App Microbiol 63: 183–229.

    Article  CAS  Google Scholar 

  • Trotsenko YA, Doronina NV, Khmelenina VN (2005) Biotechnological potential of aerobic methylotrophic bacteria: a review of current state and future prospects. Appl Biochem Microbiol 41: 433–441.

    Article  CAS  Google Scholar 

  • Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178: 39–249.

    Article  Google Scholar 

  • Ward N, et al. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol. 2: 1616–1628.

    CAS  Google Scholar 

  • Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy. FEMS Microbiol Rev 28: 335–352.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Smith, T.J., Trotsenko, Y.A., Murrell, J.C. (2010). Physiology and Biochemistry of the Aerobic Methane Oxidizing Bacteria. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_58

Download citation

Publish with us

Policies and ethics