Skip to main content

The Hydrocarbon-Degrading Oleaginous Yeast Yarrowia lipolytica

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Yarrowia lipolytica is one of the most important non-conventional oleaginous yeasts. This review summarizes the recent advances in the taxonomy, physiology, growth requirements and environmental distribution of this particular yeast. It provides as well an extensive summary of its genomic features. Due to the remarkable potential to accumulate and modify lipids and the ability to grow on various hydrophobic substrates, Y. lipolytica has been now seriously considered as a bioconversion model for production of single-cell proteins, enzymes and lipid-derived compounds. Its presence in a variety of environments polluted with petroleum and in particular with its heavy fractions, witnesses its pivotal role in degradation of recalcitrant organic compounds. Some of them (naphthalene, dibenzofuran, and trinitrotoluene) have been already successfully tested and the process has proved to be functional. Y. lipolytica is also found in a variety of marine and hypersaline environments, thus the use of this yeast as a model system for salt-stress studies could be envisaged. Newly developed genetic tools and available genome sequence data will allow more complete exploration of this yeast in the areas of biocatalysis, bioconversion, and bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreishcheva EN, Isakova EP, Sidorov NN, Abramova NB (1999) Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry (Mosc) 64: 1061–1067.

    CAS  Google Scholar 

  • Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud JM, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6: 1450–1459.

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1992) Molecular methods for environmental monitoring and containment of genetically engineered microorganisms. Biodegradation 3: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1983) Yeasts: characteristics and identification. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In Nonconventional Yeasts in Biotechnology: A Handbook. K Wolf (ed.). Berlin: Springer, pp. 313–388.

    Google Scholar 

  • Butinar SS, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244: 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Casaregola S, Feynerol C, Diez M, Fournier P, Gaillardin C (1997) Genomic organization of the yeast Yarrowia lipolytica. Chromosoma 106: 380–390.

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Crow SA (1981) Metabolism of aromatic hydrocarbons by yeasts. Arch Microbiol 129: 9–13.

    Article  CAS  Google Scholar 

  • Chi Z, Wang F, Wang L, Li J, Wang X (2007) Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments. J Ocean University of China 6: 360–364.

    Article  CAS  Google Scholar 

  • Cholet O, Henaut A, Casaregola S, Bonnarme P (2007) Gene expression and biochemical analysis of cheese-ripening yeasts: focus on catabolism of L-methionine, lactate, and lactose. Appl Environ Microbiol 73: 2561–2570.

    Article  PubMed  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61: 47–64.

    PubMed  CAS  Google Scholar 

  • De Felice B, Pontecorvo G, Carfagna M (1997) Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20225 and Pseudomonas putida. Acta Biotechnol 17: 231–239.

    Article  CAS  Google Scholar 

  • Dominguez A, Costas M, Longo MA, Sanroman A (2003) A novel application of solid state culture: production of lipases by Yarrowia lipolytica. Biotechnol Lett 25: 1225–1229.

    Article  PubMed  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich J-M, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, de Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud J-M, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard G-F, Straub M-L, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet J-L (2004) Genome evolution in yeasts. Nature 430: 35–44.

    Article  PubMed  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5: 527–543.

    Article  PubMed  CAS  Google Scholar 

  • Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55: 727–737.

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Chi Z, Sheng J, Wang L, Li J, Gong F (2007). Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microb Ecol 54: 722–729.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez JR, Erickson LE (1977) Hydrocarbon uptake in hydrocarbon fermentation. Biotechnol Bioeng 19: 1331–1349.

    Article  PubMed  CAS  Google Scholar 

  • Harris JC, Steinmetz EA (1967) Emulsified jet engine fuel. JAE Technical Report, No. 670365.

    Google Scholar 

  • Imada A, Sinskey AJ, Tannenbaum SR (1972) Degradation of ribonucleic acid in Candida lipolytica. Extraction of ribonucleic acid degrading enzymes J Biotechnol Bioeng 14: 103–122.

    Article  CAS  Google Scholar 

  • Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN (2004) 2,4,6-Trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Marine Poll Bull 49: 783–788.

    Article  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–66.

    Article  PubMed  CAS  Google Scholar 

  • Kim JT, Kang SG, Woo JH, Lee JH, Jeong BC, Kim SJ (2007) Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Appl Microbiol Biotechnol 74: 820–828.

    Article  PubMed  CAS  Google Scholar 

  • King RB, Long GM, Sheldon JK (1992) Practical Environmental Bioremediation. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Madzak C, Gaillardin C, Beckerich J-M (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology 109: 63–81.

    Article  PubMed  CAS  Google Scholar 

  • Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J Bact 183: 5102–5109.

    Article  PubMed  CAS  Google Scholar 

  • Mauersberger S, Nicaud J-M (2003) Tagging genes by insertional mutagenesis in the yeast Yarrowia lipolytica. In Laboratory Manual on Non-conventional Yeast in Genetics, Biochemistry and Biotechnology. K Wolf, K Breunig, and G Barth (eds.). Berlin-Heidelberg-New York: Springer, pp. 343–356.

    Google Scholar 

  • Morin M, Monteoliva L, Insenser M, Gil C, Dominguez A (2007) Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. J Mass Spectrom 42: 1453–1462.

    Article  PubMed  CAS  Google Scholar 

  • Neuvéglise C, Bon E, Lepingle A, Wincker P, Artiguenave F, Gaillardin C, Casaregola S (2000) Genomic exploration of the hemiascomycetous yeasts: 9. Saccharomyces kluyveri. FEBS Lett 487: 56–60.

    Article  PubMed  Google Scholar 

  • Neuvéglise C, Chalvet F, Wincker P, Gaillardin C, Casaregola S (2005) Mutator-like element in the yeast Yarrowia lipolytica displays multiple alternative splicings. Eukaryot Cell 4: 615–624.

    Article  PubMed  Google Scholar 

  • Ogrydziak DM, Mortimer RK (1977) Genetics of extracellular protease production in Saccharomycopsis lipolytica. Genetics 87: 621–632.

    PubMed  CAS  Google Scholar 

  • Oswal N, Sharma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Biores Technol 85: 35–37.

    Article  CAS  Google Scholar 

  • Ota Y, Oikawa S, Morimoto Y, Minoda Y (1984) Nutritional factors causing mycelial development of Saccharomycopsis lipolytica. Agric Biol Chem 48: 1933–1940.

    CAS  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2008) Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol 99: 2419–2428.

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (1994) Yeasts, moulds, algae and bacteria as sources of lipids. In Technological Advances in Improved and Alternative Sources of Lipids. BS Kamel and Y Kakuda (eds.). London: Blackie Academic and Professional, pp. 235–291.

    Google Scholar 

  • Ratledge C (2005) Single cell oils for the 21st century. In Single Cell Oils. Z Cohen and C Ratlege (eds.). Champaign: AOCS Press, pp. 1–20.

    Chapter  Google Scholar 

  • Richard GF, Kerrest A, Lafontaine I, Dujon B (2005) Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol Biol Evol 22: 1011–1023.

    Article  PubMed  CAS  Google Scholar 

  • Romero MC, Hammer E, Cazau MC, Arambarri AM (2002) Isolation and characterization of biarylic structure-degrading yeasts: hydroxylation potential of dibenzofuran. Environ Pollut 118: 379–382.

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13: 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52: 154–162.

    Article  PubMed  CAS  Google Scholar 

  • Scioli C, Vollaro L (1997) The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Wat Res 31: 2520–2524.

    Article  CAS  Google Scholar 

  • Swennen D, Beckerich JM (2007) Yarrowia lipolytica vesicle-mediated protein transport pathways. BMC Evol Biol 7: 219–238.

    Article  PubMed  Google Scholar 

  • Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44: 531–542.

    Article  PubMed  CAS  Google Scholar 

  • Thevenieau F, Gaillardin C, Nicaud J-M (2008) Applications of the non-conventional yeast Yarrowia lipolytica. In Diversity and Potential Biotechnological Applications of Yeasts. G Kunze and T Satyanarayana (eds.). Amsterdam: Elsevier.

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–82.

    Article  PubMed  CAS  Google Scholar 

  • Van der Walt JP, von Arx JA (1980) The yeast genus Yarrowia gen. Antonie Van Leeuwenhoek 46: 517–521.

    Article  PubMed  CAS  Google Scholar 

  • Van Heerikhuizen H, Ykema A, Klootwijk J, Gaillardin C, Ballas C, Fournier P (1985) Heterogeneity in the ribosomal RNA genes of the yeast Yarrowia lipolytica; cloning and analysis of two size classes of repeats. Gene 39: 213–222.

    Article  PubMed  CAS  Google Scholar 

  • Vergassola M, Vespignani A, Dujon B (2005) Cooperative evolution in protein complexes of yeast from comparative analyses of its interaction network. Proteomics 5: 3116–3119.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chi Z, Wang X, Liu Z, Li J (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Annals of Microbiol 57: 495–501.

    Article  CAS  Google Scholar 

  • Wickerham LJ, Kurtzman CP, Herman AI (1970) Sexual reproduction in Candida lipolytica. Science 167: 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.

    Article  PubMed  CAS  Google Scholar 

  • Yarrow D (1972) Four new combinations in yeasts. Antonie Van Leeuwenhoek 38: 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Yorifugi T, Jacques S, Sinskey AJ (1975) N-alkane oxidizing enzymes in Candida lipolytica Abstr Journal ASM Annual Meeting p. 171.

    Google Scholar 

  • Yue L, Chi Z, Wang L, Liu J, Madzak C, Li J, Wang X (2008) Construction of a new plasmid for surface display on cells of Yarrowia lipolytica. J Microbiol Methods 72: 116–123.

    Article  PubMed  CAS  Google Scholar 

  • Zaripov SA, Naumov AV, Abdrakhmanova JF, Garusov AV, Naumova RP (2002) Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. FEMS Microbiol Lett 217: 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Zinjarde SS, Sativel C, Lachke AH, Pant A (1997) Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini isoelectric focusing unit. Lett in Appl Microbiol 24: 117–121.

    Article  CAS  Google Scholar 

  • Zinjarde SS, Pant A (2000) Crude Oil Degradation by Free and Immobilized Cells of Yarrowia lipolytica NCIM 3589. J Environ Science Health 35: 765–773.

    Article  Google Scholar 

  • Zinjarde SS, Pant A (2002) Hydrocarbon degraders from a tropical marine environment. Marine Poll Bull 44: 118–121.

    Article  CAS  Google Scholar 

  • Zvyagilskaya R, Andreishcheva E, Soares MI, Khozin I, Berhe A, Persson BL (2001) Isolation and characterization of a novel leaf-inhabiting osmo-, salt-, and alkali-tolerant Yarrowia lipolytica yeast strain. J Basic Microbiol 41: 289–303.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Beopoulos, A., Desfougeres, T., Sabirova, J., Zinjarde, S., Neuvéglise, C., Nicaud, JM. (2010). The Hydrocarbon-Degrading Oleaginous Yeast Yarrowia lipolytica . In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_152

Download citation

Publish with us

Policies and ethics