Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

• The kidneys are dose-limiting for radiation therapy of cancers of the upper abdomen, as well as for conditions treated with total body irradiation and bone marrow transplant or hematopoietic stem cell transplant.

• The architecture of the kidneys can be considered as subunits (i.e. nephrons) that are predominantly arranged “in parallel”, but with some serial function.

• The nephron is the basic structural and functional unit of the kidneys. It depends on a complex vascular system.

• The major target for injury appears to be the arteriolar-glomerular area rather than the tubular epithelium, as the earliest cellular feature of RT-induced kidney injury is glomerular endothelial cell injury.

• The kidneys maintain the homeostasis of body fluids by filtering metabolites, including the urea and fixed acid of protein catabolism.

• Glomerular filtration rate (GFR) measurements may help to adjust the dosing of cytotoxic agents, and accurate chemotherapy dosing may reduce side effects of the cytotoxic agents, all the while retaining their benefit.

• Intra-renal TGF-beta is elevated in experimental radiation nephropathy, but it is not clear if it results from injury or initiates it.

• The bone marrow transplant (BMT) nephropathy syndrome, has been defined as azotemia (doubling of baseline serum creatinine level or a >50 % decrease in the glomerular filtration rate (GFR)), hypertension, and anemia after transplant, and it occurs ≈8–12 months post-transplant.

• The time from bilateral kidney irradiation to clinical symptoms of radiation nephropathy can range from 1–9 months (in the acute presentation) to 18 years + (in the chronic presentation) of radiation nephropathy.

• Total dose associated with a 5 % risk of injury at 5 years, TD5/5, of 18–23 Gy, and a total dose associated with a 50 % risk of injury at 5 years, TD50/5, of 28 Gy, in 0.5–1.25 Gy per fraction.

• TBI dose appears to be related to risk of renal toxicity post hematopoietic stem cell transplant.

• Unilateral kidney irradiation may be followed by injury, as shown by Thompson et al. who observed a dose response for kidney atrophy and clinical kidney toxicity many years following unilateral kidney RT (Thompson et al. 1971). The effective dose associated with scintigraphic changes in 50 % of the patients (ED50) was 27 Gy when 10 % of the bilateral kidney volume was irradiated. Neonates appear to have an increased sensitivity to RT. Doses of 12–14 Gy at 1.25–1.5 Gy per fraction to the entire neonate kidney have been associated with a decreased GFR (Peschel et al. 1981).

• The therapeutic efficacy of radiolabeled antibody fragments can be limited by renal toxicity, particularly when the kidney is the major route of extraction from the circulation.

• Ureteric strictures following irradiation were first reported in 1934 following pelvic irradiation and radium brachytherapy for gynecological malignancies (Everett 1934).

• Chemotherapy related injury may manifest itself as acute renal failure (ARF), chronic renal failure, or specific tubular defects.

• Animal models of BMT nephropathy have shown that angiotensin converting enzyme (ACE) inhibitors, dexamethasone, or acetylsalicylic acid can prevent and treat chronic renal failure (Moulder et al. 2007); (Verheij et al. 1995; Cohen et al. 1997; Cohen et al. 2007); (Moulder et al. 1987, 1998a, b).

• In chronic kidney disease, a reduction in renal workload by low protein diet, and salt restriction may delay the progression to renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(ACE):

Angiotensin converting enzyme

(ARF):

Acute renal failure

(BMT):

Bone marrow transplant

(CrCl):

Clearance of creatinine

(DVH):

Dose–volume histogram

(GFR):

Glomerular filtration rate

(HSCT):

Hematopoietic stem cell transplant

(HUS):

Hemolytic uremic syndrome

(NTCP):

Normal tissue complication probability

(NT):

Nephrotoxic

(RT):

Radiation therapy

(TBI):

Total body irradiation

References

  • Abou-Alfa GK, Schwartz L, Ricci S et al (2006) Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24(26):4293–4300

    PubMed  CAS  Google Scholar 

  • Ahmad NR, Huq MS, Corn BW (1997) Respiration-induced motion of the kidneys in whole abdominal radiotherapy: implications for treatment planning and late toxicity. Radiother Oncol 42(1):87–90

    PubMed  CAS  Google Scholar 

  • Avioli LV, Lazor MZ, Cotlove E et al (1963) Early effects of radiation on renal function in man. Am J Med 34:329–337

    PubMed  CAS  Google Scholar 

  • Beitler JJ, Makara D, Silverman P et al (2004) Definitive, high-dose-per-fraction, conformal, stereotactic external radiation for renal cell carcinoma. Am J Clin Oncol 27(6):646–648

    PubMed  Google Scholar 

  • Birkhead BM, Dobbs CE, Beard MF et al (1979) Assessment of renal function following irradiation of the intact spleen for Hodgkin disease. Radiology 130(2):473–475

    PubMed  CAS  Google Scholar 

  • Bollee G, Patey N, Cazajous G et al (2009) Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant 24(2):682–685

    PubMed  CAS  Google Scholar 

  • Borg M, Hughes T, Horvath N et al (2002) Renal toxicity after total body irradiation. Int J Radiat Oncol Biol Phys 54(4):1165–1173

    PubMed  Google Scholar 

  • Bradley J, Reft C, Goldman S et al (1998) High-energy total body irradiation as preparation for bone marrow transplantation in leukemia patients: treatment technique and related complications. Int J Radiat Oncol Biol Phys 40(2):391–396

    PubMed  CAS  Google Scholar 

  • Brenner BM (1983) Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int 23(4):647–655

    PubMed  CAS  Google Scholar 

  • Burman C, Kutcher GJ, Emami B et al (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21(1):123–135

    PubMed  CAS  Google Scholar 

  • Canpolat C, Pearson P, Jaffe N (1994) Cisplatin-associated hemolytic uremic syndrome. Cancer 74(11):3059–3062

    PubMed  CAS  Google Scholar 

  • Capizzi RL (1999) Amifostine reduces the incidence of cumulative nephrotoxicity from cisplatin: laboratory and clinical aspects. Semin Oncol 26(2 Suppl 7):72–81

    PubMed  CAS  Google Scholar 

  • Cassady JR (1995) Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys 31(5):1249–1256

    PubMed  CAS  Google Scholar 

  • Cheng J, Schultheiss T, Wong J (2008). Impact of drug therapy, radiation dose and dose rate on renal toxicity following bone marrow transplantation. Int J Radiat Biol I71(5):1436–1443

    Google Scholar 

  • Chou RH, Wong GB, Kramer JH et al (1996) Toxicities of total-body irradiation for pediatric bone marrow transplantation. Int J Radiat Oncol Biol Phys 34(4):843–851

    PubMed  CAS  Google Scholar 

  • Cogan MG, Arieff AI (1978) Radiation nephritis and intravascular coagulation. Clin Nephrol 10(2):74–78

    PubMed  CAS  Google Scholar 

  • Cohen E (2005) Cancer and the kidney. Oxford University Press, Oxford

    Google Scholar 

  • Cohen E, Bonsib S, Whiehouse E et al (2000) Mediators and mechanisms of radiation nephropathy. Proc Soc Exper Biol Med 223:218–225

    CAS  Google Scholar 

  • Cohen EP, Fish BL, Moulder JE (1997) Successful brief captopril treatment in experimental radiation nephropathy. J Lab Clin Med 129(5):536–547

    PubMed  CAS  Google Scholar 

  • Cohen EP, Fish BL, Moulder JE (1999) Angiotensin II infusion exacerbates radiation nephropathy. J Lab Clin Med 134(3):283–291

    PubMed  CAS  Google Scholar 

  • Cohen EP, Fish BL, Moulder JE (2002) The renin-angiotensin system in experimental radiation nephropathy. J Lab Clin Med 139(4):251–257

    PubMed  CAS  Google Scholar 

  • Cohen EP, Fish BL, Sharma M et al (2007) Role of the angiotensin II type-2 receptor in radiation nephropathy. Transl Res: J Lab Clin Med 150(2):106–115

    CAS  Google Scholar 

  • Cohen EP, Hussain S, Moulder JE (2003) Successful treatment of radiation nephropathy with angiotensin II blockade. Int J Radiat Oncol Biol Phys 55(1):190–193

    PubMed  Google Scholar 

  • Cohen EP, Irving AA, Drobyski WR et al (2008) Captopril to mitigate chronic renal failure after hematopoietic stem cell transplantation: a randomized controlled trial. Int J Radiat Oncol Biol Phys 70(5):1546–1551

    PubMed  PubMed Central  Google Scholar 

  • Cohen EP, Lawton CA, Moulder JE et al (1993) Clinical course of late-onset bone marrow transplant nephropathy. Nephron 64(4):626–635

    PubMed  CAS  Google Scholar 

  • Cohen EP, Moulder JE (2005) Radiation nephropathy. Cancer and the liver. In: Cohen EP (ed) Oxford University Press Inc, New York, pp 169–179

    Google Scholar 

  • Cohen EP, Moulder JE, Robbins ME (2001) Radiation nephropathy caused by yttrium 90. Lancet 358(9287):1102–1103 [see comment]

    PubMed  CAS  Google Scholar 

  • Cohen EP, Piering WF, Kabler-Babbitt C et al (1998) End-stage renal disease (ESRD) after bone marrow transplantation: poor survival compared to other causes of ESRD. Nephron 79(4):408–412

    PubMed  CAS  Google Scholar 

  • Cohen EP, Robbins ME (2003) Radiation nephropathy. Semin Nephrol 23(5):486–499

    PubMed  Google Scholar 

  • Cohen L, Creditor M (1983) Iso-effect tables for tolerance of irradiated normal human tissues. Int J Radiat Oncol Biol Phys 9(2):233–241

    PubMed  CAS  Google Scholar 

  • Cruz DN, Perazella MA, Mahnensmith RL (1997) Bone marrow transplant nephropathy: a case report and review of the literature. J Am Soc Nephrol 8(1):166–173

    PubMed  CAS  Google Scholar 

  • Datta PK, Moulder JE, Fish BL et al (1999) TGF-beta 1 production in radiation nephropathy: role of angiotensin II. Int J Radiat Biol 75(4):473–479

    PubMed  CAS  Google Scholar 

  • Dawson et al (2010) Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S108–S115

    Google Scholar 

  • de Jonge MJ, Verweij J (2006) Renal toxicities of chemotherapy. Semin Oncol 33(1):68–73

    PubMed  Google Scholar 

  • Delgado J, Cooper N, Thomson K et al (2006) The importance of age, fludarabine, and total body irradiation in the incidence and severity of chronic renal failure after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transpl 12(1):75–83

    Google Scholar 

  • Dewit L, Verheij M, Valdes Olmos RA et al (1993) Compensatory renal response after unilateral partial and whole volume high-dose irradiation of the human kidney. Eur J Cancer 29A(16):2239–2243

    PubMed  CAS  Google Scholar 

  • Donaldson SS, Moskowitz PS, Canty EL et al (1980) Combination radiation-adriamycin therapy: renoprival growth, functional and structural effects in the immature mouse. Int J Radiat Oncol Biol Phys 6(7):851–859

    PubMed  CAS  Google Scholar 

  • Doub H, Bollinger A, Hartman F (1927) Radiology VIII: 142

    Google Scholar 

  • Edsall DL (1906) The attitude of the clinician in regard to exposing patients to the X-ray. J Am Med Assoc 47:1425–1429

    Google Scholar 

  • Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122

    PubMed  CAS  Google Scholar 

  • Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    PubMed  CAS  Google Scholar 

  • Everett H (1934) Urologic complications following pelvic irradiation. Am J Obstet Gynecol 38:1–12

    Google Scholar 

  • Fleckenstein K, Zgonjanin L, Chen L et al (2007) Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Phys 68(1):196–204

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flentje M, Hensley F, Gademann G et al (1993) Renal tolerance to nonhomogenous irradiation: comparison of observed effects to predictions of normal tissue complication probability from different biophysical models. Int J Radiat Oncol Biol Phys 27(1):25–30

    PubMed  CAS  Google Scholar 

  • Frangie C, Lefaucheur C, Medioni J et al (2007) Renal thrombotic microangiopathy caused by anti-VEGF-antibody treatment for metastatic renal-cell carcinoma. Lancet Oncol 8(2):177–178

    PubMed  Google Scholar 

  • Frisk P, Bratteby LE, Carlson K et al (2002) Renal function after autologous bone marrow transplantation in children: a long-term prospective study. Bone Marrow Transplant 29(2):129–136

    PubMed  CAS  Google Scholar 

  • Gardner G, Mesler D, Gitelman HJ (1989) Hemolytic uremic syndrome following cisplatin, bleomycin, and vincristine chemotherapy: a report of a case and a review of the literature. Ren Fail 11(2–3):133–137

    PubMed  CAS  Google Scholar 

  • Giralt S, Bensinger W, Goodman M et al (2003) 166Ho-DOTMP plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase 1/2 trials. Blood 102(7):2684–2691

    PubMed  CAS  Google Scholar 

  • Glatstein E, Fajardo LF, Brown JM (1977) Radiation injury in the mouse kidney–I. Sequential light microscopic study. Int J Radiat Oncol Biol Phys 2(9–10):933–943

    PubMed  CAS  Google Scholar 

  • Holweger K, Bokemeyer C, Lipp HP (2005) Accurate measurement of individual glomerular filtration rate in cancer patients: an ongoing challenge. J Cancer Res Clin Oncol 131(9):559–567

    PubMed  Google Scholar 

  • Igaki H, Karasawa K, Sakamaki H et al (2005) Renal dysfunction after total-body irradiation. Significance of selective renal shielding blocks. Strahlenther Onkol 181(11):704–708

    PubMed  Google Scholar 

  • Irwin C, Fyles A, Wong CS et al (1996) Late renal function following whole abdominal irradiation. Radiother Oncol 38(3):257–261

    PubMed  CAS  Google Scholar 

  • Jackson IL, Batinic-Haberle I, Sonveaux P et al (2006) ROS production and angiogenic regulation by macrophages in response to heat therapy. Int J Hyperthermia 22(4):263–273

    PubMed  CAS  Google Scholar 

  • Jaenke RS, Robbins ME, Bywaters T et al (1993) Capillary endothelium. Target site of renal radiation injury. Lab Invest 68(4):396–405

    PubMed  CAS  Google Scholar 

  • Jaggi JS, Seshan SV, McDevitt MR et al (2006) Mitigation of radiation nephropathy after internal alpha-particle irradiation of kidneys. Int J Radiat Oncol Biol Phys 64(5):1503–1512

    PubMed  Google Scholar 

  • Jansen EP, Saunders MP, Boot H et al (2007) Prospective study on late renal toxicity following postoperative chemoradiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 67(3):781–785

    PubMed  CAS  Google Scholar 

  • Johnston CJ, Piedboeuf B, Rubin P et al (1996) Early and persistent alterations in the expression of interleukin-1 alpha, interleukin-1 beta and tumor necrosis factor alpha mRNA levels in fibrosis-resistant and sensitive mice after thoracic irradiation. Radiat Res 145(6):762–767

    PubMed  CAS  Google Scholar 

  • Judit Boda-Heggemann, Ralf-Dieter Hofheinz, Christel Weiss et al (2009) Combined adjuvant radiochemotherapy with IMRT/XELOX improves outcome with low renal toxicity in gastric cancer. Int J Radiat Oncol Biol Phys 75(4):1187–1195

    Google Scholar 

  • Juncos LI, Carrasco Duenas S, Cornejo JC et al (1993) Long-term enalapril and hydrochlorothiazide in radiation nephritis. Nephron 64(2):249–255

    PubMed  CAS  Google Scholar 

  • Kamil E, Latta H, Johnston W et al (1978) Radiation nephritis following bone marrow transplantation (abstract). Kidney Int 14:713

    Google Scholar 

  • Kavanagh BD, Scheftera TE, Wersall PJ (2007) Liver, renal, and retroperitoneal tumors: stereotactic radiotherapy. Front Radiat Ther Oncol 40:415–426

    PubMed  Google Scholar 

  • Keane WF, Crosson JT, Staley NA et al (1976) Radiation-induced renal disease. A clinicopathologic study. Am J Med 60(1):127–137

    PubMed  CAS  Google Scholar 

  • Kelly RJ, Billemont B, Rixe O (2009) Renal toxicity of targeted therapies. Target Oncol 4(2):121–133

    PubMed  Google Scholar 

  • Kemp G, Rose P, Lurain J et al (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14(7):2101–2112

    PubMed  CAS  Google Scholar 

  • Kim TH, Freeman CR, Webster JH (1980) The significance of unilateral radiation nephropathy. Int J Radiat Oncol Biol Phys 6(11):1567–1571

    PubMed  CAS  Google Scholar 

  • Kim TH, Somerville PJ, Freeman CR (1984) Unilateral radiation nephropathy–the long-term significance. Int J Radiat Oncol Biol Phys 10(11):2053–2059

    PubMed  CAS  Google Scholar 

  • Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24(1):19–38

    PubMed  CAS  Google Scholar 

  • Kost S, Dorr W, Keinert K et al (2002) Effect of dose and dose-distribution in damage to the kidney following abdominal radiotherapy. Int J Radiat Biol 78(8):695–702

    PubMed  CAS  Google Scholar 

  • Kumasaka R, Nakamura N, Shirato K et al (2004) Side effects of therapy: case 1. Nephrotic syndrome associated with gefitinib therapy. J Clin Oncol 22(12):2504–2505

    PubMed  Google Scholar 

  • Kunkler PB, Farr RW, Luxton RW (1952). The limit of renal tolerance to X rays. Br J Radiol XXV(292):190–201

    Google Scholar 

  • Lambert B, Cybulla M, Weiner SM et al (2004) Renal toxicity after radionuclide therapy. Radiat Res 161(5):607–611

    PubMed  CAS  Google Scholar 

  • Lau WK, Blute ML, Weaver AL et al (2000) Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin Proc 75(12):1236–1242

    PubMed  CAS  Google Scholar 

  • Lawton CA, Cohen EP, Barber-Derus SW et al (1991) Late renal dysfunction in adult survivors of bone marrow transplantation. Cancer 67(11):2795–2800 [erratum appears in Cancer 1991 Sep 2791; 2768(2795):1112]

    Google Scholar 

  • Lawton CA, Cohen EP, Murray KJ et al (1997) Long-term results of selective renal shielding in patients undergoing total body irradiation in preparation for bone marrow transplantation. Bone Marrow Transpl 20(12):1069–1074

    CAS  Google Scholar 

  • LeBourgeois J, Meignan M, Parmentier C et al (1979) Renal consequences of irradiation of the spleen in lymphoma patients. British J Radiol 52:56–60

    CAS  Google Scholar 

  • Lewis EJ, Hunsicker LG, Bain RP et al (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. [erratum appears in N Engl J Med 1993 Jan 13;330(2):152]. New Engl J Med 329(20): 1456–1462

    Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390

    PubMed  CAS  Google Scholar 

  • Luxton RW (1953) Radiation nephritis. Q J Med XXII(86):215–242

    Google Scholar 

  • Luxton RW, Kunkler PB (1964) Radiation Nephritis. Acta Radiol Ther Phys Biol 2:169–178

    PubMed  CAS  Google Scholar 

  • Markoe AM, Brady LW, Swartz C et al (1989) Radiation effects on renal function. Front Radiat Ther Oncol 23:310–322

    PubMed  CAS  Google Scholar 

  • Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO (2010) Use of Normal Tissue Complication Probability Models in the Clinic. International Journal of Radiation Oncology, Biology and Physics 76(3 Suppl):S10–S19

    Google Scholar 

  • Maschio G, Alberti D, Janin G et al (1996) Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The angiotensin-converting-enzyme inhibition in progressive renal insufficiency study group. N Engl J Med 334(15):939–945

    PubMed  CAS  Google Scholar 

  • Masutani K, Fujisaki K, Maeda H et al (2008) Tubulointerstitial nephritis and IgA nephropathy in a patient with advanced lung cancer treated with long-term gefitinib. Clin Exp Nephrol 12(5):398–402

    PubMed  CAS  Google Scholar 

  • McKiernan J, Simmons R, Katz J et al (2002) Natural history of chronic renal insufficiency after partial and radical nephrectomy. Urology 59(6):816–820

    PubMed  Google Scholar 

  • Miralbell R, Bieri S, Mermillod B et al (1996) Renal toxicity after allogeneic bone marrow transplantation: the combined effects of total-body irradiation and graft-versus-host disease. J Clin Oncol 14(2):579–585

    PubMed  CAS  Google Scholar 

  • Mitus A, Tefft M, Fellers FX (1969) Long-term follow-up of renal functions of 108 children who underwent nephrectomy for malignant disease. Pediatrics 44(6):912–921

    PubMed  CAS  Google Scholar 

  • Moerland MA, van den Bergh AC, Bhagwandien R et al (1994) The influence of respiration induced motion of the kidneys on the accuracy of radiotherapy treatment planning, a magnetic resonance imaging study. Radiother Oncol 30(2):150–154

    PubMed  CAS  Google Scholar 

  • Moll S, Nickeleit V, Mueller-Brand J et al (2001) A new cause of renal thrombotic microangiopathy: yttrium 90-DOTATOC internal radiotherapy. Am J Kidney Dis 37(4):847–851

    PubMed  CAS  Google Scholar 

  • Moreau P, Facon T, Attal M et al (2002) Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood 99(3):731–735

    PubMed  CAS  Google Scholar 

  • Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL (1989) Late toxicity of total body irradiation with bone marrow transplantation in a rat model. Int J Radiat Oncol Biol Phys 16(6):1501–1509

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL (1997) Age dependence of radiation nephropathy in the rat. Radiat Res 147(3):349–353

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL, Abrams RA (1987) Renal toxicity following total-body irradiation and syngeneic bone marrow transplantation. Transplantation 43(4):589–592

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1997) Noncontinuous use of angiotensin converting enzyme inhibitors in the treatment of experimental bone marrow transplant nephropathy. Bone Marrow Transpl 19(7):729–735

    CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1998a) Angiotensin II receptor antagonists in the treatment and prevention of radiation nephropathy. Int J Radiat Biol 73(4):415–421

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1998b) Radiation nephropathy is treatable with an angiotensin converting enzyme inhibitor or an angiotensin II type-1 (AT1) receptor antagonist. Radiother Oncol 46(3):307–315

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (2007) Treatment of radiation nephropathy with ACE inhibitors and AII type-1 and type-2 receptor antagonists. Curr Pharm Des 13(13):1317–1325

    PubMed  CAS  Google Scholar 

  • Nadasdy T, Laszik Z, Blick KE et al (1994) Proliferative activity of intrinsic cell populations in the normal human kidney. J Am Soc Nephrol 4(12):2032–2039

    PubMed  CAS  Google Scholar 

  • Nevinny-Stickel M, Poljanc K, Forthuber BC et al (2007) Optimized conformal paraaortic lymph node irradiation is not associated with enhanced renal toxicity. Strahlenther Onkol 183(7):385–391

    PubMed  Google Scholar 

  • Novakova-Jiresova A, van Luijk P, van Goor H et al (2007) Changes in expression of injury after irradiation of increasing volumes in rat lung. Int J Radiat Oncol Biol Phys 67(5):1510–1518

    PubMed  Google Scholar 

  • Otte A, Herrmann R, Heppeler A et al (1999) Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med 26(11):1439–1447

    PubMed  CAS  Google Scholar 

  • Paterson R (1952) Renal damage from radiation during treatment of seminoma testis. J Fac Radiol (London) 3:370–374

    Google Scholar 

  • Paulino AC, Wilimas J, Marina N et al (1996) Local control in synchronous bilateral Wilms tumor. Int J Radiat Oncol Biol Phys 36(3):541–548

    PubMed  CAS  Google Scholar 

  • Peschel RE, Chen M, Seashore J (1981) The treatment of massive hepatomegaly in stage IV-S neuroblastoma. Int J Radiat Oncol Biol Phys 7(4):549–553

    PubMed  CAS  Google Scholar 

  • Press OW, Rasey J (2000) Principles of radioimmunotherapy for hematologists and oncologists. Semin Oncol 27(6 Suppl 12):62–73

    PubMed  CAS  Google Scholar 

  • Rabinowe SN, Soiffer RJ, Tarbell NJ et al (1991) Hemolytic-uremic syndrome following bone marrow transplantation in adults for hematologic malignancies. Blood 77(8):1837–1844

    PubMed  CAS  Google Scholar 

  • Ritchey ML, Green DM, Thomas PR et al (1996) Renal failure in Wilms ‘tumor patients: a report from the national Wilms’ tumor study group. Med Pediatr Oncol 26(2):75–80 [see comment]

    PubMed  CAS  Google Scholar 

  • Rubin P, Casarett G (1968) Clinical Radiation Pathology. Philidelphia, WB Saunders

    Google Scholar 

  • Rubin P, Johnston CJ, Williams JP et al (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33(1):99–109

    PubMed  CAS  Google Scholar 

  • Schneider DP, Marti HP, Von Briel C et al (1999) Long-term evolution of renal function in patients with ovarian cancer after whole abdominal irradiation with or without preceding cisplatin. Ann Oncol 10(6):677–683

    PubMed  CAS  Google Scholar 

  • Skinner R (2003) Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol 41(3):190–197

    PubMed  CAS  Google Scholar 

  • Stewart FA, Te Poele JA, Van der Wal AF et al (2001) Radiation nephropathy–the link between functional damage and vascular mediated inflammatory and thrombotic changes. Acta Oncol 40(8):952–957

    PubMed  CAS  Google Scholar 

  • Svedman C, Rutkowska E, Karlsson K et al (2008) Stereotactic body radiotherapy of metastatic renal lesions for patients with only one functioning kidney. Acta Oncologica 47:1578–1583

    Google Scholar 

  • Svedman C, Sandstrom P, Pisa P et al (2006) A prospective Phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol 45(7):870–875

    PubMed  Google Scholar 

  • Tarbell NJ, Guinan EC, Chin L et al (1990) Renal insufficiency after total body irradiation for pediatric bone marrow transplantation. Radiother Oncol 18(Suppl 1):139–142

    PubMed  Google Scholar 

  • Teh B, Bloch C, Galli-Guevara M et al (2007) The treatment of primary and metastatic renal cell carcinoma (RCC) with image guided stereotactic body radiation therapy (SBRT). Biomed Imaging Interv J 3(1):1–9

    Google Scholar 

  • Thompson PL, Mackay IR, Robson GS et al (1971) Late radiation nephritis after gastric x-irradiation for peptic ulcer. Q J Med 40(157):145–157

    PubMed  CAS  Google Scholar 

  • Travis EL, Peters LJ, McNeill J et al (1985) Effect of dose-rate on total body irradiation: lethality and pathologic findings. Radiother Oncol 4(4):341–351

    PubMed  CAS  Google Scholar 

  • Van Why SK, Friedman AL, Wei LJ et al (1991) Renal insufficiency after bone marrow transplantation in children. Bone Marrow Transpl 7(5):383–388

    Google Scholar 

  • Varlotto JM, Gerszten K, Heron DE et al (2006) The potential nephrotoxic effects of intensity modulated radiotherapy delivered to the para-aortic area of women with gynecologic malignancies: preliminary results. Am J Clin Oncol 29(3):281–289

    PubMed  Google Scholar 

  • Verheij M, Dewit LG, Valdes Olmos RA et al (1994) Evidence for a renovascular component in hypertensive patients with late radiation nephropathy. Int J Radiat Oncol Biol Phys 30(3):677–683

    PubMed  CAS  Google Scholar 

  • Verheij M, Stewart FA, Oussoren Y et al (1995) Amelioration of radiation nephropathy by acetylsalicylic acid. Int J Radiat Biol 67(5):587–596

    PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Anscher MS, Feng QF et al (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50(4):851–855

    PubMed  CAS  Google Scholar 

  • Welz S, Hehr T, Kollmannsberger C et al (2007) Renal toxicity of adjuvant chemoradiotherapy with cisplatin in gastric cancer. Int J Radiat Oncol Biol Phys 69(5):1429–1435

    PubMed  CAS  Google Scholar 

  • Wersall PJ, Blomgren H, Lax I et al (2005) Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma. Radiother Oncol 77(1):88–95

    PubMed  Google Scholar 

  • White DC (1975) An atlas of radiation histopathology. U.S. Energy Research & Development Administration, Oak Ridge, p 177

    Google Scholar 

  • Willett CG, Tepper JE, Orlow EL et al (1986) Renal complications secondary to radiation treatment of upper abdominal malignancies. Int J Radiat Oncol Biol Phys 12(9):1601–1604

    PubMed  CAS  Google Scholar 

  • Yao X, Panichpisal K, Kurtzman N et al (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    PubMed  Google Scholar 

  • Zhu X, Wu S, Dahut WL et al (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 49(2):186–193

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Institutes of Health, USA, NIH/NIAID U19 AI067734 (John Moulder, PI, Eric Cohen, co-investigator). The authors appreciate the thoughtful comments regarding this chapter from Dr. Jolie Ringash, Dr. Zahra Kassam, and Dr. Charles Cho, staff radiation oncologists, and Dr. Mark Lee radiation oncology fellow from the Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Horgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dawson, L.A., Horgan, A., Cohen, E.P. (2014). Kidney and Ureter. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT • Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75863-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75863-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75862-4

  • Online ISBN: 978-3-540-75863-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics