Skip to main content

Soft Materials in Technology and Biology – Characteristics, Properties, and Parameter Identification

  • Chapter
Bioengineering in Cell and Tissue Research

Abstract

The growing interest in flexible structures has also brought biomechanics into the focus of engineers. Elastomers and soft tissues consist of similar networks of macromolecules. After a brief introduction to the concepts of continuum mechanics, typical isotropic models of soft materials in technology and biology are presented. Similarities and differences of the thermo-mechanical behavior are discussed. For rubber-like materials a modification of the Kilian network is suggested which greatly simplifies the identification of material parameters. Finally the dynamical loading of biopolymers and volume changes with phase transitions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball JM (1977) Convexity conditions and existence theorems in nonlinear elasticity. Archive for Rational Mechanics and Analysis 63:337–403

    Article  MATH  Google Scholar 

  2. Balzani D, Schroeder J, Gross D, Neff P (2005) Modeling of anisotropic damage in arterial walls based on polyconvex stored energy functions. In: Oñate E, Owen DRJ (eds) VIII International Conference on Computational Plasticity COMPLAS VIII, CIMNE, Barcelona

    Google Scholar 

  3. Baumgärtner A (1991) Gummielastizität. In 22. IFF Ferienkurs: Physik der Polymere. Jülich: Forschungszentrum Jülich, 21:1–38

    Google Scholar 

  4. Becker E, Bürger W (1975) Kontinuumsmechanik. Teubner, Stuttgart

    MATH  Google Scholar 

  5. Böhme G (2000) Strömungsmechanik nichtnewtonscher Fluide. Teubner, Stuttgart

    MATH  Google Scholar 

  6. Braunschweig H (2004) Viskoelastische Stoßprobleme. Diploma thesis, Aachen University of Applied Sciences

    Google Scholar 

  7. Bryant-Greenwood GD, Millar LK (2000) Human fetal membranes: their preterm premature rupture. Biol Reprod 63(6):1575–1579

    Article  Google Scholar 

  8. Buggisch H, Mazilu P, Weber H (1988) Parameter identification for viscoelastic materials. Rheologica Acta 27(4):363–368

    Article  MATH  Google Scholar 

  9. Ciarlet PG (1988) Mathematical Elasticity, Volume 1: Three Dimensional Elasticity. Elsevier, North-Holland

    Google Scholar 

  10. Cowin SC, Doty SB (2007) Tissue Mechanics. Springer, New York

    MATH  Google Scholar 

  11. Ehlers W, Karajan N, Markert B (2006) A porous media model describing the inhomogeneous behaviour of the human intervertebral disc. Materialwissenschaft und Werkstofftechnik 37:546–551

    Article  Google Scholar 

  12. Eringen AC (1967) Mechanics of Continua. John Wiley, New York

    MATH  Google Scholar 

  13. Flory PI (1953) Principles of Polymer Science. Cornell University Press, Ithaca, NY, London

    Google Scholar 

  14. Fung YC (1955) An introduction to the theory of aeroelasticity. John Wiley, New York

    Google Scholar 

  15. Fung YC (1967) Elasticity of soft tissue in simple elongation. Am J Physiol 213:1532–1544

    Google Scholar 

  16. Fung YC (1993) Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer, New York

    Google Scholar 

  17. Kassab GS (2004) Fung (Bert) YC (ed) The Father of Modern Biomechanics. Molecular & Cellular Biomechanics 1:5–22

    Google Scholar 

  18. Green AE, Adkins JA (1970) Large Elastic Deformation. Oxford University Press, Oxford

    Google Scholar 

  19. Haupt P (1971) Viskoelastizität inkompressibler isotroper Stoffe. Dissertation, Universität Berlin

    Google Scholar 

  20. Holzapfel GA (2005) Similarities between soft biological tissues and rubberlike materials. In: Austrell P-E, Kari L (eds) Constitutive Models for Rubber IV. A. A. Balkema, Leiden, pp 607–617

    Google Scholar 

  21. Holzapfel GA, Ogden RW (eds) (2003) Biomechanics of soft tissue in cardiovascular systems. Springer, Wien

    MATH  Google Scholar 

  22. Holzapfel GA, Ogden RW (eds) (2003) Mechanics of biological tissue. Springer, Berlin

    Google Scholar 

  23. Hsu FPK, Downs J, Liu AMC, Rigamonti D, Humphrey JD (1995) A triplane video-based experimental system for studying axisymmetrically inflated biomembranes. IEEE Trans Biomed Eng 42:442–449

    Article  Google Scholar 

  24. Huilgol RR (1972) Continuum Mechanics. John Wiley, New York

    Google Scholar 

  25. Humphrey JD (2002) Cardiovascular Solid mechanics: Cells, Tissues, and Organs. Springer, New York

    Google Scholar 

  26. Itskov M, Ehret AE, Mavritas D (2006) A polyconvex anisotropic strain–energy function for soft collagenous tissues. Biomech Model Mechanbiol 5:17–26

    Article  Google Scholar 

  27. Kelemen C, Chien S, Artmann GM (2001) Temperature transition of human hemoglobin at body temperature: Effects of calcium. Biophysical Journal 80:2622–2630

    Google Scholar 

  28. Kilian H-G (1985) An interpretation of the strain-invariants in largely strained networks. Colloid Polymer Sci 263:30–34

    Article  Google Scholar 

  29. Kilian HG (1986) Möglichkeiten und Grenzen der Charakterisierung von Elastomeren im Zugversuch. GAK 39(10):548–553

    Google Scholar 

  30. Kuecken M (2004) On the Formation of Fingerprints. PhD thesis, University of Arizona

    Google Scholar 

  31. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. Journal of the Mechanics and Physics of Solids 53(7):1552–1573

    Article  MATH  MathSciNet  Google Scholar 

  32. Lambertz D (1985) Mechanische Kenngrößen biologischer Strukturen bei dynamischer Belastung. Diploma thesis, Aachen University of Applied Sciences

    Google Scholar 

  33. Landau LD, Lifschitz EM (1965) Elastizitätstheorie. Akademie Verlag, Berlin

    MATH  Google Scholar 

  34. Mazilu P (1973) On the constitutive law of Boltzmann-Volterra. Rev Roum Math Pures et Appl 18:1067–1069

    MATH  MathSciNet  Google Scholar 

  35. Mazilu P (1985) Die Onsager’schen Reziprozitätsbeziehungen in der Thermodynamik der Boltzmann-Volterra Materialien. Z angew Math Mech 65:137–149

    Article  MATH  MathSciNet  Google Scholar 

  36. Müller I (1973) Thermodynamik. Bertelsmann, Düsseldorf

    MATH  Google Scholar 

  37. Müller I (2001) Grundzüge der Thermodynamik. Springer, Berlin

    Google Scholar 

  38. Ogden RW, Saccomandi G, Sgura I (2006) On worm-like chain models within the three-dimensional continuum mechanics framework. Proc Roy Soc A462:749–768

    Article  MATH  MathSciNet  Google Scholar 

  39. Pechhold W, von Soden W, Kimmich R (1973) The meander model of muscle. Kolloid-Z u Z Polymere 252:829–842

    Article  Google Scholar 

  40. Pechhold WR, Gross T, Grossmann HP (1982) Meander model of amorphous polymers. Colloid Polymer Sci 260:378–393

    Article  Google Scholar 

  41. Reese S (2000) Thermomechanische Modellierung gummiartiger Polymerstrukturen. Habilitation, Universität Hannover

    Google Scholar 

  42. Roy CS (1880–82) The elastic properties of the arterial wall. Journal of Physiology 3:125–159

    Google Scholar 

  43. Schajer GS, Steinzig M (2005) Full-field calculation of hole-drilling residual stresses from electronic speckle pattern interferometry data. Experimental Mechanics 45(6):526–532

    Article  Google Scholar 

  44. Šilhavý M (1997) The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin

    MATH  Google Scholar 

  45. Sponagel S (1987) Gummi-Metall-Bauteile. Dissertation, Universität Kaiserslautern

    Google Scholar 

  46. Sponagel S, Unger J, Spies KH (2003) Härtebegriff im Zusammenhang mit Vernetzung, Bruchdehnung und Dauerfestigkeit eines Elastomers. Kautschuk Gummi Kunststoffe 56(11):608–613

    Google Scholar 

  47. Staat M, Ballmann J (1989) Fundamental aspects of numerical methods for the propagation of multidimensional nonlinear waves in solids. In: Ballmann J, Jeltsch R (eds) Nonlinear Hyperbolic Equations – Theory, Computation Methods, and Applications. Vieweg, Braunschweig, Wiesbaden, pp 574–588

    Google Scholar 

  48. Staat M, Ballmann J (1989) Zur Problematik tensorieller Verallgemeinerungen einachsiger nichtlinearer Materialgesetze. Z angew Math Mech 69(2):73–81

    Article  MATH  Google Scholar 

  49. Timoshenko SP, Goodier JN (1970) Theory of Elasticity. MacGraw-Hill, New York

    MATH  Google Scholar 

  50. Truesdell C, Noll W (1965) The Nonlinear Field Theories of Mechanics. In: Flügge S (ed) Handbuch der Physik, Vol. III/3. Springer, Berlin, Göttingen, Heidelberg

    Google Scholar 

  51. Yamada H (1970) Strength of Biological Materials. Williams & Wilkins, Baltimore

    Google Scholar 

  52. Artmann GM, Zerlin KF, Digel I (2008) Hemoglobin senses body temperature. In Artmann GM, Chien S (eds) Bioengineering in Cell and Tissue Research. Springer, Heidelberg, Berlin, pp 415–442

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staat, M., Baroud, G., Topcu, M., Sponagel, S. (2008). Soft Materials in Technology and Biology – Characteristics, Properties, and Parameter Identification. In: Artmann, G., Chien, S. (eds) Bioengineering in Cell and Tissue Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75409-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75409-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75408-4

  • Online ISBN: 978-3-540-75409-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics