Skip to main content

Abstract

This chapter deals with climate-related changes in the marine ecosystem of the Baltic Sea. The Baltic Sea is often described as one of the world’s largest brackish water bodies. It has a unique combination of oceanographic, climatic, and geographic features. Most important in this context is: the sea is a nearly enclosed area having a water residence time of 30 years, due to restricted water exchange through the Danish Straits. It is situated in northern Europe and has, therefore, some arctic characteristics and a pronounced seasonality. It is affected alternately by continental and marine climatic effects. It has a catchment area approximately four times larger than the sea itself, while it is as the same time very shallow, with an average depth of only 56 m, having thus a relatively small water body. Seasonal vertical mixing of the water reaches a depth of 30–50 m and contributes to resuspension of nutrients and pollutants. In deeper parts, a permanent halocline appears, below which anoxia is common and interrupted only by major inflows of North Sea water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaris-Sørensen K (1998) Danmarks forhistoriske dyreverden (Prehistoric animal world of Denmark). Gyldendal, Copenhagen (in Danish)

    Google Scholar 

  • ACIA (2004) Arctic Climate Impact Assessment. Scientific Report, http://www.acia.uaf.edu/pages/scienti-fic.html

  • Ackefors H (1981) Zooplankton. In: Voipio A (ed) The Baltic Sea. Elsevier Oceanography Series 30. Elsevier, Amsterdam, pp. 238–254

    Google Scholar 

  • Aebischer N, Coulson J, Colebrook J. (1990) Parallel long-term trends across four marine trophic levels and weather. Nature 347:753–755

    Google Scholar 

  • Ahlbäck R (1955) Kökar. Näringslivet och dess organisation i en utskärssocken (Island of Kökar: Economic life and it’s organisation in an outer archipelago parish) Skrifter utgivna av Svenska Litteratursällskapet i Finland 351 (in Swedish)

    Google Scholar 

  • Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617

    Google Scholar 

  • Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Env Int 29:683–689

    Google Scholar 

  • Albalat A, Potrykus J, Pempkowiak J, Porte C (2002) Assessment of organotin pollution along the Polish coast (Baltic Sea) by using mussels and fish as sentinel organisms. Chemosphere 47:165–171

    Google Scholar 

  • Alheit J, Hagen E (2001) Climate variability and northwest European fisheries. In: Proceedings of the Hanse Conference on “Past climate and its significance for human history in northwest Europe, the last 10,000 years”, Delmenhorst Germany, October 1999, pp. 9–14

    Google Scholar 

  • Allsopp M, Erry B, Santillo D, Johnston P (2001) POPs in the Baltic — a review of persistent organic pollutants (POPs) in the Baltic Sea. Greenpeace International London, pp. 92

    Google Scholar 

  • Amano M, Hayano A, Miayzaki N (2002) Geographic variation in the skull of the ringed seal Pusa hispida. J Mammal 83,2:370–380

    Google Scholar 

  • Andersin A-B, Sandier H (1991) Macrobenthic fauna and oxygen deficiency in the Gulf of Finland. Memoranda Societatis Pro Fauna et Flora Fennica 67:3–10

    Google Scholar 

  • Andersin A-B, Lassig J, Parkkonen L, Sandler H (1978) The decline of macrofauna in the deeper parts of the Baltic Proper and Gulf of Finland. Kieler Meeresforschungen 4:23–52

    Google Scholar 

  • Andrén E, Andrén T, Kunzendorff H (2000) Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. Holocene 10,6:687–702

    Google Scholar 

  • Aneer G (1975) Composition of food of the Baltic herring (Clupea harengus v. membras L), fourhorn sculpin (Myoxocephalus quadricornis L), and eel-pout (Zoarces vivparus L) from deep soft bottom trawling in the Askö-landsort area in two consecutive years. Merentutkimuslait. Julk./ Havsforskningsinst. Skrifter 239:146–154

    Google Scholar 

  • Anker-Nielssen T (1992) Food-supply as a determinant of reproduction and population development in Norwegian Puffins Fratercula arctica. PhD Thesis, University of Trondheim, Norway

    Google Scholar 

  • Anker-Nielssen T, Aarvak T (2002) The population ecology of Puffins at Røst. Status after the breeding season 2001. Norsk Institutt for Naturforskning: Oppdragsmelding 736:1–40

    Google Scholar 

  • Arnosti C, Sagemann J, Jøprgensen B, Thamdrup B (1998) Temperature dependence of microbial degradation of organic matter in marine sediments: Polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser 165:59–70

    Google Scholar 

  • Arnott SA, Ruxton GD (2002) Sandeel recruitment in the North Sea: Demographic, climatic and trophic effects. Mar Ecol Prog Ser 238:199–210

    Google Scholar 

  • Arntz WE, Brunswig D (1975) Studies on structure and dynamics of macrobenthos in the western Baltic carried out by the joint research programme “Interaction sea-sea bottom” (SFB 95-Kiel). Proceedings of 10th European Symposium on Marine Biology. Ostend, Belgium, 17-23 Sept 1975, vol. 2

    Google Scholar 

  • Aro E (2000) The spatial and temporal distribution patterns of cod (Gadus morhua callaris L.) in the Baltic Sea, and their dependence on environmental variability — Implications for fishery management. Finnish Game and Fisheries Research Institute, Helsinki.

    Google Scholar 

  • Aschan M (1988) Soft bottom macrobenthos in a Baltic archipelago: Spatial variation and optimal sampling strategy. Ann Zool Fennici 25:153–164

    Google Scholar 

  • Assmuth T, Jalonen P (2005) Risks and Management of Dioxin-like Compounds in Baltic Sea Fish: An Integrated Assessment. TemaNord 2005:568, Nordic Council of Ministers, Copenhagen 2005

    Google Scholar 

  • Autio R (1998) Response of seasonally cold-water bacterioplankton to temperature and substrate treatments. Estuar Coast Shelf Sci 46:465–474

    Google Scholar 

  • Axenrot T, Hansson S (2003) Predicting herring recruitment from young-of-the-year densities, spawning stock biomass, and climate. Limnol Oceanogr 48:1716–1720

    Google Scholar 

  • Baduini C, Hyrenbach K, Coyle K, Pinchuk A, Menenhall V, Hunt G (2001) Mass-mortality of shorttailed shearwaters in the south-eastern Bering Sea during summer 1997. Fish Oceanogr 10:117–130

    Google Scholar 

  • Bagge O (1989) A review of investigations of the predation of cod in the Baltic. Rapp P-V Réun Cons Int Explor Mer 190:51–56

    Google Scholar 

  • Bagge O, Thurow F, Steffensen E, Bay J (1994) The Baltic cod. Dana 10:1–28

    Google Scholar 

  • Baker AJ, González PM, Piersma T, Niles LJ, de Lima Serrano do Nascimento I, Atkinson PW, Clark NA, Minton CDT, Peck MK, Aarts G (2004) Rapid population decline in red knots: Fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proc Roy Soc London, B 271:875–882

    Google Scholar 

  • Banta GT, Giblin AE, Hobbie JE, Tucker J (1995) Benthic respiration and nitrogen release in Buzzards Bay, Massachusetts. J Mar Res 53:107–135

    Google Scholar 

  • Barber DG, Iacozza J (2004) Historical analysis of sea ice conditions in M’Clintoc Channel and the Gulf of Boothia, Nunavut: Implications for ringed seal and polar bear habitat. Arctic 57,1:1–14

    Google Scholar 

  • Barrett R, Krasnov Y (1996) Recent responses to changes in stocks of prey species by seabirds breeding in the southern Barents Sea. ICES J Mar Sci 53:713–722

    Google Scholar 

  • Baumann H, Hinrichsen HH, Möllmann C, Köster FW, Malzahn AM, Temming A (2006) Recruitment variability in Baltic Sea sprat (Sprattus sprattus) is tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Can J Fish Aquat Sci 63:2191–2201

    Google Scholar 

  • Begg GA, Marteinsdottir G (2002) Environmental and stock effects on spawning origins and recruitment of cod Gadus morhua. Mar Ecol Prog Ser 229:263–277

    Google Scholar 

  • Bergman G (1956) Sälbeståndet vid våra kuster (The seal population at our coast). Nordenskiöldsamfundets tidskrift XVI:49–65 (in Swedish)

    Google Scholar 

  • Berryman AA (1999) Principles of population dynamics and their application. Stanley Thornes Publishers, Cheltenham, UK

    Google Scholar 

  • Berthold P (1990) Patterns of avian migration in light of current global “greenhouse” effects: a Central European perspective. Acta XX Congressus Internationalis Ornithologici, vol. II:780–786

    Google Scholar 

  • Bettarell Y, Amblard C, Sime-Ngando T, Carrias J-F, Sargos D, Garabetian F and Lavandier P (2003) Viral lysis, flagellate grazing potential, and bacterial production in lake Pavin. Microb Ecol 45:119–127

    Google Scholar 

  • Beyer J, Lassen H (1994) The effect of size-selective mortality on size-at-age Baltic herring. Dana 10:203–234

    Google Scholar 

  • Bianchi TS, Engelhaupt E, Westman P, Andrén T, Rolff C, Elmgren R (2000) Cyanobacterial blooms in the Baltic Sea: Natural or human-induced? Limnol Oceanogr 45:716–726

    Google Scholar 

  • Bignert A, Litzen K, Odsjö T, Olsson M, Persson W, Reutergårdh L (1995) Time-related factors influence the concentration of sDDT, PCBs and shell parameters in eggs of Baltic Guillemot (Uria aalge). Env Pollut 89:1861–1989

    Google Scholar 

  • Bignert A, Asplund L, Willander A (2004) Comments Concerning the National Swedish Contaminant Monitoring Programme in Marine Biota. Rapport till Naturvårdsverket, 2004-04-30

    Google Scholar 

  • Boeschker HTS, de Graf W, Köster M, Meyer-Reil L-A, Cappenberg TE (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol Ecol 35:97–103

    Google Scholar 

  • Bogovski S, Sergeyev B, Muzyka V, Karlova S (1998) Cytochrome P450 system and heme synthase enzymes activity in flounder liver as biomarkers of marine environments pollution. Mar Env Res 46: 13–16

    Google Scholar 

  • Bonner WN (1972) Grey seal and common seal in European waters. Oceanogr Mar Biol Ann Rev 10: 461–507

    Google Scholar 

  • Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: Continuous post-glacial succession in a stressed ecosystem. J Exp Mar Biol Ecol 330:383–391

    Google Scholar 

  • Bonsdorff E, Pearson TH (1999) Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: A functional-group approach. Austral Ecol 24:312–326

    Google Scholar 

  • Bonsdorff E, Aarnio K, Sandberg E (1991) Temporal and spatial variability of zoobenthic communities in archipelago waters of the northern Baltic Sea — consequences of eutrophication? Int Rev Ges Hydrobiol 76,3:433–449

    Google Scholar 

  • Bonsdorff E, Blomquist EM, Mattila J, Norkko A (1997) Coastal Eutrophication: Cause, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuar Coast Shelf Sci 44:63–72

    Google Scholar 

  • Borg H, Jonsson P (1996) Large-scale metal distribution in Baltic Sea sediments. Mar Pollut Bull 32: 8–21

    Google Scholar 

  • Brander K, Mohn B (2004) Effect of the North Atlantic Oscillation on recruitment of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 61:1558–1564

    Google Scholar 

  • Brettar I, Rheinheimer G (1991) Dinitrification in the Central Baltic: Evidence for H2S-oxidation as motor of denitrification in the oxic-anoxic interface. Mar Ecol Prog Ser 77:157–169

    Google Scholar 

  • Brey T (1986) Increase in macrozoobenthos above the halocline in Kiel Bay comparing the 1960s with the 1980s. Mar Ecol Prog Ser 28:299–302

    Google Scholar 

  • Brommer J (2004) The range margins of northern birds shift polewards. Ann Zool Fennici 41:391–397

    Google Scholar 

  • Burris JE (1980) Vertical Migration of Zooplankton in the Gulf of Finland. Am Midland Nat 103: 316–321

    Google Scholar 

  • Burton JK (1995) Birds and Climate Change. Helm, London

    Google Scholar 

  • Canagaratnam P (1959) Growth of fishes in different salinities. J Fish Res Board Can 16:121–129

    Google Scholar 

  • Cardinale M, Arrhenius F (2000) Decreasing weight-at-age of Atlantic herring (Clupea harengus) from the Baltic Sea between 1986 and 1996: A statistical analysis. ICES J Mar Sci 57:882–893

    Google Scholar 

  • Cardinale M, Casini M, Arrhenius F (2002) The influence of biotic and abiotic factors on the growth of sprat (Sprattus sprattus) in the Baltic Sea. Aquat Living Resour 15:273–281

    Google Scholar 

  • Casini M, Cardinale M, Hjelm J (2006) Inter-annual variation in herring Clupea harengus, and sprat, Sprattus sprattus, condition in the central Baltic Sea: What gives the tune? Oikos 112:638–650

    Google Scholar 

  • Cederwall H (1979) Energy flow and fluctuations of deeper soft bottom communities in the Baltic Sea. Askö Laboratory and Department of Zoology, University of Stockholm, Sweden, pp. 1–23

    Google Scholar 

  • Cederwall H, Elmgren R (1980) Biomass increase of benthic macrofauna demonstrates eutrophication of the Baltic Sea. Ophelia, Suppl 1:287–304

    Google Scholar 

  • Clarke A, Harris CM (2003) Polar marine ecosystems: Major threats and future change. Env Conservat 30,1:1–25

    Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: An approach to regression analysisi by local fitting. J American Statistical Assoc 85:596–610

    Google Scholar 

  • Conley D, Humborg C, Rahm L, Savchuk OP, Wulff F (2002) Hypoxia in the Baltic Sea and basinscale changes in phosphorus biogeochemistry. Env Sci Technol 36:5315–5320

    Google Scholar 

  • Crick HQP (2004) The impact of climate change on birds. Ibis 146(Suppl):48–56

    Google Scholar 

  • Crick HQP, Sparks TH (1999) Climate change related to egg-laying trends. Nature 399:423–424

    Google Scholar 

  • Crotty CM, Tyrrell PN, Espie GS (1994) Quenching of Chlorophyll a Fluorescence in Response to Na+ — Dependent HCO3 - Transport-Mediated Accumulation of Inorganic Carbon in the Cyanobacterium Synechococcus UTEX 625. Plant Physiol 104:785–791

    Google Scholar 

  • Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzales L (2003) N-2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 442:606–608

    Google Scholar 

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 145:457–464

    Google Scholar 

  • Dalziel JA (1995) Reactive mercury in the eastern North Atlantic and southeast Atlantic. Mar Chem 49:307–314

    Google Scholar 

  • Dannenberger D (1996) Chlorinated microcontaminants in surface sediments of the Baltic Sea: investigations in the Belt Sea, the Arkona Sea and the Pomeranian Bight. Mar Pollut Bull 32:772–781

    Google Scholar 

  • Davies JH (1957) The geography of the grey seal. J Mammal 38:297–310

    Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    Google Scholar 

  • Davis BAS, Brewer S Stevenson AC, Guiot J, Data Contributors (2003) The temperature of Europe during Holocene reconstructed from pollen data. Quat Sci Rev 22,15–17:1701–1716

    Google Scholar 

  • Daw T, Gray T (2005) Fisheries science and sustainability in international policy: a study of failure in the European Union’s Common Fisheries Policy. Mar Pol 29:189–197

    Google Scholar 

  • Demel K, Mulicki Z (1954) Studia ilosciowe nad wydajnoscia biologiczna dna poludniowego Baltyku (Quantitative studies on biological productivity of the southern Baltic bottom). Prace Morsk Inst Ryback w Gdyni 7:75–126 (in Polish)

    Google Scholar 

  • Depledge M (1990) Interactions between heavy metals and physiological processes in estuarine invertebrates. In: Chambers PL, Chambers CM (eds) Estuarine Ecotoxicology. Japaga, pp. 89–100

    Google Scholar 

  • de Swart RL, Ross PS, Vos JG, Osterhaus ADME (1996) Impaired immunity in harbour seals (Phoca vitulina) exposed to bioaccumulated environmental contaminants: Review of a long-term feeding study. Env Health Perspect 104:823–828

    Google Scholar 

  • Diamond AW, Devlin CM (2003) Seabirds as indicators of changes in marine ecosystems: Ecological monitoring of Machias Seal Island. Env Monit Assess 88:153–175

    Google Scholar 

  • Dippner JW, Ikauniece A (2001) Long-term zoobenthos variability in the Gulf of Riga in relation to climate variability. J Mar Sys 30:155–164

    Google Scholar 

  • Dippner JW, Voss M (2004) Climate reconstruction of the MWP in the Baltic Sea area based on biogeochemical proxies from a sediment record. Baltica 17:5–16

    Google Scholar 

  • Dippner JW, Kornilovs G, Sidrevics L (2000) Long-term variability of mesozooplankton in the Central Baltic Sea. J Mar Sys 25:23–31

    Google Scholar 

  • Dippner JW, Hänninen J, Kuosa H, Vuorinen I (2001) The Influence on Climate Variability on zooplankton abundance in the Northern Baltic Archipelago Sea (SW Finland). ICES J Mar Sci 58: 569–578

    Google Scholar 

  • Doney SC (2006) Plankton in a warmer world. Nature 444:695–696

    Google Scholar 

  • Dunn P (2004) Breeding dates and reproductive performance. In: Møller A, Fiedler W, Berthold P (2004) Birds and Climate Change. Adv Ecol Res 35:69–85

    Google Scholar 

  • Durink J, Skov H, Jensen FP, Pihl S (1994) Important Marine Areas for wintering Birds in the Baltic Sea. Report to European Commission DG XI Research Contract 2242/90-09-01. Ornis Consult, Copenhagen, Denmark

    Google Scholar 

  • Eero M, MacKenzie BR, Köster FW (2005) Developing biomass estimates for the eastern Baltic cod population for the entire 20th century. Havforskermødet 3-5 Feb 2005, Copenhagen, Denmark

    Google Scholar 

  • Eero M, MacKenzie BR, Karlsdottir HM, Gaumiga R (2007) Development of international fisheries for the eastern Baltic cod (Gadus morhua) from the late 1880s until 1938. Fish Res (in press)

    Google Scholar 

  • Elmgren R (1978) Structure and dynamics of Baltic benthos communities, with particular reference to the relationship between macro-and meiofauna. Kieler Meeresforsch 4:1–22

    Google Scholar 

  • Elmgren R (1989) Man’s impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18:326–332

    Google Scholar 

  • Elmgren R (2001) Understanding Human Impact on the Baltic Ecosystem, Changing views in Recent Decades. Ambio 30:222–231

    Google Scholar 

  • Elmgren R, Rosenberg R, Andersin A-B, Evans S, Kangas P, Lassig J, Leppäkoski E, Varmo B (1984) Benthic macro-and meiofauna in the Gulf of Bothnia (Northern Baltic) Fin Mar Res 250:3–18

    Google Scholar 

  • Engström P, Dalsgaard T, Huluth S, Aller RC (2005) Anaerobic ammonium oxidation by nitrite (anammox): Implications for N-2 production in coastal marine sediments. Geochim Cosmochim Acta 69:2057–2065

    Google Scholar 

  • Enghoff IB (1999) Fishing in the Baltic region from the 5th century BC to the 16th century AD: Evidence from fish bones. Archaeofauna 8:41–85

    Google Scholar 

  • Enghoff IB, MacKenzie BR, Nielsen EE (2007) The Danish fish fauna during the warm Atlantic period (ca. 7,000-3,900 BC): forerunner of future changes? Fish Res (in press)

    Google Scholar 

  • Ericson G, Lindesjöö E, Balk L (1998) DNA adducts and histopathological lesions in perch (Perca fluviatilis) and northern pike (Esox lucius) along a polycyclic aromatic hydrocarbon gradient on the Swedish coastline of the Baltic Sea. Can J Fish Aquat Sci 55:815–824

    Google Scholar 

  • Ericson PGP, Tyrberg T (2004) The early history of the Swedish avifauna. A review of the subfossil record and early written sources. Kungl Vitterhets Historie Och Antikvitets Akademien, Stockholm, Sweden

    Google Scholar 

  • Falandysz J (2003) The Baltic Sea — Poland. Background document for the 1st Technical Workshop of UNEP/GEF Project Regional Based Assessment of Persistent Toxic Substances-Region III-Europe. TOCOEN REPORT No 241, Brno

    Google Scholar 

  • Falandysz J, Brzostowski A, Szpunar J, Rodriguez-Pereiro I (2002) Butyltins in sediments and threespined stickleback (Gasterosteus aculleatus) from the marinas of the Gulf of Gdansk, Baltic Sea. J Env Sci Health A 37:353–363

    Google Scholar 

  • Fenchel T (1988) Marine plankton food chains. Ann Rev Ecol Syst 19:19–38

    Google Scholar 

  • Ferguson SH, Stirling I, McLoughlin P (2005) Climate change and ringed seal (Phoca hispida) recruitment in western Hudson bay. Mar Mamm Sci 21,1:121–135

    Google Scholar 

  • Fiedler W, Bairlein F, Köppen U (2004) Using large-scale data from ringed bird for the investigation of effects of climate change on migrating birds: pitfalls and prospects. In: Møller A, Fiedler W, Berthold P (eds) Birds and Climate Change. Adv Ecol Res 35: 49–68

    Google Scholar 

  • FIMR (2003) Ice winter 2002/2003, http://www.fimr.fi/en/palvelut/jaapalvelu/jaatalvi2002–2003.html

  • Finni T, Kononen K, Olsonen R, Wallström K (2001) The History of Cyanobacterial Blooms in the Baltic Sea. Ambio 30:172–178

    Google Scholar 

  • Fisher UR, Velmirov B (2002) High control of bacterial production by viruses in an eutrophic oxbow lake. Aquatic Microb Ecol 27:1–12

    Google Scholar 

  • Flinkman J (1999) Interactions between plankton and planktivores of the northern Baltic Sea: Selective predation and predation avoidance. Walter and Andrée de Nottbeck Foundation Scientific Reports 18

    Google Scholar 

  • Flinkman J, Vuorinen I, Aro E (1992) Planktivorous Baltic Herring (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Can J Fish Aquat Sci 49:75–77

    Google Scholar 

  • Flinkman J, Aro E, Vuorinen I, Viitasalo M (1998) Changes in northern Baltic Zooplankton and herring nutrition from 1980s to 1990s: Top-down and bottom-up processes at work. Mar Ecol Prog Ser 165:127–136

    Google Scholar 

  • Fonselius SH (1978) On nutrients and their role as production limiting factors in the Baltic. Acta Hydrochim Hydrobiol 6:329–339

    Google Scholar 

  • Fonselius SH, Valderrama J (2003) One hundred years of hydrographie measurements in the Baltic Sea. J Sea Res 49:229–241

    Google Scholar 

  • Forchammer MC, Post E, Stenseth NC (2002) North Atlantic Oscillation timing of long-and short-distance migration. J Anim Ecol 71:1002–1014

    Google Scholar 

  • Forstén A, Alhonen P (1975) The subfossil seals of Finland and their relations to the history of the Baltic Sea. Boreas 4:143–155

    Google Scholar 

  • Franck H, Matthäus W (1992) The absence of effective major inflows and the present changes in the hydrographie conditions of the central Baltic deep water. In: Bjornestad, E, L Hagerman, K Jensen (eds) 12th Baltic Mar Biol Symp, Olsen and Olsen, Fredensborg

    Google Scholar 

  • Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascade in a formerly cod-dominated ecosystem. Science 308:1621–1623

    Google Scholar 

  • Gerlach SA (1994) Oxygen conditions improve when the salinity in the Baltic Sea decreases. Mar Poll Bull 28:413–416

    Google Scholar 

  • Gislason H (1999) Single and multispecies reference points for Baltic fish stocks. ICES J Mar Sci 56: 571–583

    Google Scholar 

  • Gjerdrum CG, Vallée AMJ, St Clair CC, Bertram DF, Ryder JL, Blackburn GS (2003) Tuften puffin reproduction reveals ocean climate variability. Proceedings of the National Academy of Science of the USA 100:9377–9388

    Google Scholar 

  • Goodman SJ (1998) Patterns of extensive genetic differentation and variation among Europaean harbour seals (Phoca vitulina vitulina) revealed using mitochondrial DNA polymorphisms. Mol Biol Evol 15:104–118

    Google Scholar 

  • Gustafsson BG (2004) Sensitivity of Baltic Sea salinity to large perturbations in climate. Clim Res 27: 237–251

    Google Scholar 

  • Hänninen J, Vuorinen I, Hjelt P (2000) Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol Oceanogr 45:703–710

    Google Scholar 

  • Hänninen J, Vuorinen I, Kornilovs G (2003) Atlantic climatic factors control decadal dynamics of a Baltic Sea Copepod, Temora longicornis. Ecography 26:672–678

    Google Scholar 

  • Härkönen TO, Stenman O, Jüssi M, Jüssi I, Sagitov R, Verevkin M (1998) Population size and distribution of the Baltic ringed seal (Phoca hispida botnica). In: Heide-Jørgensen MP, Lydersen C (eds) Ringed seals in the North Atlantic NAMMCO Scientific publications, vol. I, TromsØ, Norway

    Google Scholar 

  • Härkönen T, Harding KC, Goodman SJ, Johannesson K (2005) Colonization history of the Baltic harbor seals: Integrating archaeological, behavioural, and genetic data. Mar Mamm Sci 21: 695–716

    Google Scholar 

  • Hagström Å, Pinhassi J, Zweifel UL (2001) Marine bacterioplankton show bursts of rapid growth induced by substrate shifts. Aquat Microb Ecol 24:109–115

    Google Scholar 

  • Hajdu S, Larsson U, Skärlund K (1997) Växtplankton. In: Elmgren R, Larsson U (Eds) Himmerfjärden. Förändringar i ett näringsbelastat kustekosystem i Östersjön. (Phytoplankton. In: Himmerfjärden. Changes in a nutrient-enriched coastal ecosystem of the Baltic Sea). Naturvårdsverket (SEPA) 4565:63–79 (in Swedish)

    Google Scholar 

  • Hajdu S, Pertola S, Kuosa H (2005) Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence — a review. Harmful Algae 4:471–480

    Google Scholar 

  • Halkka A, Helle E, Heiander B, Jüssi I, Karlsson O, Soikkeli M, Stenman O, Verevkin MF (2005) Number of grey seals counted in censuses in the Baltic Sea 2000–2004. Symposium on Biology and Management of Seals in the Baltic Area. Riistaja kalaraportteja 346

    Google Scholar 

  • Hall AJ, McConnell BJ, Barker RJ (2001) Factors affecting first-year survival in grey seals and their implications for life history strategy. J Anim Ecol 70,1:138–149

    Google Scholar 

  • Hall LW Jr, Anderson RD (1995) The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit Rev Toxicol 25:281–346

    Google Scholar 

  • Hammond PS, Berggren P, Benke H, Borchers DL, Collet A, Heide-Jørgensen MP, Heimlich S, Hiby AR, Leopold MF, Øien N (2002) Distribution and abundance of the harbour porpoise and other cetaceans in the North Sea and adjacent waters. J Appl Ecol 39:361–376

    Google Scholar 

  • Hansen FC, Möllmann C, Schütz U, Neumann T (2006) Spatio-temporal distribution and production of calanoid copepods in the Central Baltic Sea. J Plankton Res 28:39–54

    Google Scholar 

  • Hansen S, Lavigne DM (1997) Temperature effects on the breeding distribution of grey seals (Halichoerus grypus). Physiol Zool 70,4:436–443

    Google Scholar 

  • Hansen S, Lavigne DM, Innes S (1995) Energy metabolism and thermoregulation in juvanile harbor seals (Phoca vitulina) in air. Physiol Zool 68,2:290–315

    Google Scholar 

  • Hansson S (1985) Effects of eutrophication on fish communities with special reference to the Baltic Sea — a literature review. Rep Inst Freshw Res Drottningholm 62:36–56

    Google Scholar 

  • Harding KC, Härkönen TJ (1999) Development in the Baltic grey seal (Halichoerus grypus and ringed seal (Phoca hispida) populations during the 20th century. Ambio 28,7:619–625

    Google Scholar 

  • Harding KC, Fujiwara M, Axberg Y, Härkönen T (2005) Mass-dependent energetics and survival in harbour seal pups. Funct Ecol 19:129–135

    Google Scholar 

  • Harding KC, Härkönen T, Helander B, Karlsson O (2007) Population assessment and risk analysis of Baltic grey seals. In: Haug T, Hammill M. Olafsdottir D, Pike DG (eds) Grey Seals in the North Atlantic and the Baltic. NAMMCO Scientific Publications 6, in press

    Google Scholar 

  • Hario M, Selin K (1986) Mitä pesinnän ajoittuminen kertoo haahkan menestymisestä Suomenlahdella (A 30 year change in the breeding time of the common eider in the Gulf of Finland). Suomen Riista 33:19–25 (in Finnish)

    Google Scholar 

  • Harris M, Wanless S (1996) Differential responses of Guillemots (Uria aalge) and Shag (Phalacrocorax aristotelis) to a late winter wreck. Bird Study 43:220–230

    Google Scholar 

  • Heath MR, Gallego A (1998) Bio-physical modelling of the early life stages of haddock in the North Sea. Fish Oceanogr 7:110–125

    Google Scholar 

  • Hegseth EN, E Sakshaug (1983) Seasonal variation in light-and temperature-dependent growth of marine planktonic diatoms in in-situ dialysis cultures in the Trondheimsfjord, Norway (63° N). J Exp Mar Biol Ecol 67:199–220

    Google Scholar 

  • Heiskanen A-S, Gran V, Lehtoranta J, Pitkänen H (2000) Fate of nutrients (N,P) along the estuarine gradient of the River Neva in the eastern Gulf of Finland, Baltic Sea. Short communication. ICES J Mar Sci (Suppl) 56:161–164

    Google Scholar 

  • HELCOM (1990) Second Periodic Assessment of the State of the Marine Environment of the Baltic Sea, 1984–1988. Background document — BSEP No 35B

    Google Scholar 

  • HELCOM (1993) First assessment of the State of the Coastal Waters in the Baltic Sea. Baltic Sea Environment Proceedings No 54

    Google Scholar 

  • HELCOM (1996) Third periodic assessment of the state of the marine environment of the Baltic Sea, 1989–93. Background document. Baltic Sea Environment Proceedings 64B

    Google Scholar 

  • HELCOM (2002) Fourth periodic assessment of the state of the marine environment of the Baltic Sea, 1994–98. Background document. Baltic Sea Environment Proceedings 82B

    Google Scholar 

  • HELCOM (2003a) Proceedings of the joint IMO/HELCOM/EU Workshop “Environmental impacts due to the increased density of shipping in the Baltic Sea area — Copenhagen plus 1” Baltic Sea Environment Proceedings No 86

    Google Scholar 

  • HELCOM (2003b) The Baltic Marine Environment 1999–2002. Baltic Sea Environment Proceedings No 87

    Google Scholar 

  • HELCOM (2004) Dioxin in the Baltic Sea Helsinki Commission. Baltic Marine Environment Protection Commission

    Google Scholar 

  • HELCOM (2005) Nutrient Pollution to the Baltic Sea in 2000. Baltic Sea Environment Proceedings No 100

    Google Scholar 

  • HELCOM HABITAT (2004) Development of Baltic waterbird monitoring strategy — Pilot Phase: evaluation of available data and conclusion on necessary follow-up activities Document for HELCOM HABITAT 6, 2004

    Google Scholar 

  • Herbert R (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23563–590

    Google Scholar 

  • Hettler WF (1976) Influence of temperature and salinity on routine metabolic rate and growth of young Atlantic menhaden. J Fish Biol 8:55–65

    Google Scholar 

  • Hiby L, Lundberg T, Karlsson O, Watkins J, Jüssi M, Jüssi I, Heiander B (2007) Estimates of the size of the Baltic grey seal population based on photo-identification data. In: Haug T, Hammill M. Olafsdottir D, Pike DG (eds) Grey Seals in the North Atlantic and the Baltic. NAMMCO Scientific Publications 6 (in press)

    Google Scholar 

  • Hietanen S, Kuparinen J (2005) Nitrogen fluxes at the sediment-water interface (SEGUE-N). Tvärminne Studies 10:33

    Google Scholar 

  • Hinrichsen HH, Möllmann C, Voss R, Köster FW, Kornilovs G (2002) Bio-physical modelling of larval Baltic cod (Gadus morhua) survival and growth. Can J Fish Aquat Sci 59:1958–1973

    Google Scholar 

  • Hoar WS (1952) Thyroid function in some anadromous and landlocked teleosts. Transactions of the Royal Society of Canada. VOL XLVI Ser III:39–53

    Google Scholar 

  • Holm P, Bager M (2001) The Danish fisheries c. 1450–1800. Medieval and early modern sources and their potential for marine environmental history. In: Holm P, Smith TD (eds) Exploited Seas: Directions for Marine Environmental History. St John’s, Newfoundland

    Google Scholar 

  • Holm P, Smith TD, Starkey DJ (2001) The exploited seas: New directions for marine environmental history. Int Maritime Econ Hist Assoc, Maritime Studies Research Unit, Memorial University of Newfoundland, St John’s, Newfoundland, Canada

    Google Scholar 

  • Hook O, Johnels AG (1972) Breeding and distribution of the grey seal (Halichoerus grypus Fab) in the Baltic Sea with observations of other seals of the area. Proc R Soc Lond B 182:37–58

    Google Scholar 

  • Hoppe HG (1981) Blue-green algae agglomeration in surface water: A biotope of high algal activity. Kieler Meeresforsch 5:291–303

    Google Scholar 

  • Horstmann U (1975) Eutrophication and mass production of blue-green algae in the Baltic. Merentutkimuslaitos Julk/Havsforskningsinst Skr 239:83–90

    Google Scholar 

  • Hübel H, Hübel M (1980) Nitrogen fixation during blooms of Nodularia in coastal waters and backwaters of the Arkona Sea (Baltic Sea) in 1974. Int Rev Ges Hydrobiol 65:793–808

    Google Scholar 

  • Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond, Ser B: Biol Sci 270:233–240

    Google Scholar 

  • Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V (2000) Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50

    Google Scholar 

  • Hunt GL Jr, Harrison NM (1990) Foraging habitat and prey taken by least auklets at King Island, Alaska. Mar Ecolol Prog Ser 65:141–150

    Google Scholar 

  • ICES (1997) Report of the Working Group on the Assessment of Pelagic Stocks in the Baltic ICES CM 1997/Assess: 12

    Google Scholar 

  • ICES (2003a) Report of the Study Group on Multispecies Assessment in the Baltic ICES CM 2003/H:03

    Google Scholar 

  • ICES (2003b) A review of the status and trends of seabirds in the Baltic Sea. ICES CM 2003/C: 03 Copenhagen

    Google Scholar 

  • ICES (2004a) Report of the Advisory Committee on Fisheries Management and Advisory Committee on Ecosystems. ICES Advice 1:1–1544

    Google Scholar 

  • ICES (2004b) Report of the Baltic Fisheries Assessment Working Group ICES CM 2004/ACFM:22

    Google Scholar 

  • ICES (2004c) Report of the Baltic Salmon and Trout Assessment Working Group. ICES CM 2004/ACFM: 23

    Google Scholar 

  • Ikauniece A (2001) Long-term abundance dynamics of coastal Zooplankton in the Gulf of Riga. Env Internat 26:175–181

    Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RW (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Google Scholar 

  • Järvekülg A (1979) Donnaja fauna vosochnoj chasti Baltijskogo morja (Bottom fauna of the Eastern part of the Baltic Sea). Valgus, Tallinn (in Russian)

    Google Scholar 

  • Janssen F, Neumann T, Schmidt M (2004) Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions. Mar Ecol Prog Ser 275:59–68

    Google Scholar 

  • Jarre-Teichmann A, Wieland K, MacKenzie BR, Hinrichsen HH, Plikshs M, Aro, E (2000) Stockrecruitment relationships for cod (Gadus morhua callarias L) in the central Baltic Sea incorporating environmental variability. Arch Fish Mar Res 48:97–123

    Google Scholar 

  • Jennings S, Kaiser MJ (1998) The effects of fishing on marine ecosystems. Adv Mar Biol 34:201–352

    Google Scholar 

  • Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: Advances in longdistance migrants, delays in short-distance migrants. Proc R Soc Lond B 270:1467–1471

    Google Scholar 

  • Jørgensen BB (1977) Bacterial sulfate reduction within reduced microniches of oxic marine sediments. Mar Biol 41:7–17

    Google Scholar 

  • Jørgensen BB (1996) Material flux in the sediment. In: Jørgensen BB, Richardson K (eds) Eutrophication in coastal marine ecosystems. American Geophysical Union Washington DC

    Google Scholar 

  • Jonsson P (2000) Sediment Burial of PCBs in the offshore Baltic Sea. Ambio 29:260–267

    Google Scholar 

  • Jonsson P, Carman R, Wulff F (1990) Laminated sediments in the Baltic — A tool for evaluating nutrient mass balances. Ambio 19: 152–158

    Google Scholar 

  • Jonsson P, Grimvall A, Cederlof A, Hilden M (1996) Pollution threats to the Gulf of Bothnia. Ambio Special Report 8:21–26

    Google Scholar 

  • Jonzen N, Cardinale M, Gardmark A, Arrhenius F, Lundberg P (2002) Risk of collapse in the eastern Baltic cod fishery. Mar Ecol Prog Ser 240:225–233

    Google Scholar 

  • Jüssi I, Jüssi M (2001) Action plan for Grey Seals in Estonia 2001–2005. Eesti Ulikud (Estonian Game) 7:64

    Google Scholar 

  • Kändier R (1949) Die Häufigkeit pelagischer Fischeier in der Ostsee als Maßstab für die Zu-und Abnahme der Fischbestände (The abundance of pelagic fish eggs in the Baltic Sea as a measure for the rise and decline of fish stocks). Kieler Meeresforsch VI:73–98 (in German)

    Google Scholar 

  • Kahru M (1997) Using satellites to monitor large-scale environmental change: a case study of cyanobacteria blooms in the Baltic. In: Kahru M, Brown CW (eds) Monitoring algal blooms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kahru M, Horstmann U, Rud O (1994) Satellite detection of increased cyanobacteria blooms in the Baltic Sea: Natural fluctuations or ecosystem change? Ambio 23:469–472

    Google Scholar 

  • Kahru M, Leppänen JM, Rud O, Savchuk OP (2000) Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Mar Ecol Prog Ser 207:13–18

    Google Scholar 

  • Kalejs M, Tamsalu R (1984) Ocherki po biologicheskoj produktivnosti Baltijskogo morja (The salinity regime of the Baltic Sea. The temperature regime of the Baltic Sea, T.1). In: Essays on the Baltic Sea biological productivity. Moscow, pp. 33–67 (in Russian)

    Google Scholar 

  • Kalela O (1946) Zur Ausbreitungsgeschichte der Vögel vegetationsreicher Seen (On the migration history of birds from lakes with strong vegetation). Annales Academiae Scientiarum Fennicae. A.IV. Biologica 12:1–81 (in German)

    Google Scholar 

  • Kalela O (1949) Changes in geographic ranges in the avifauna of northern and central Europe in relation to recent changes in climate. Bird Banding 20:77–103

    Google Scholar 

  • Kannan K, Falandysz J (1997) Butyltin residues in sediment, fish, fish-eating birds, harbour porpoise and human tissues from the Polish coast of the Baltic Sea. Mar Pollut Bull 34:203–207

    Google Scholar 

  • Kannan K, Senthilkumar K, Duda CA, Villeneuve DL, Falandysz J, Giesy J (1999) Butyltin compounds in sediment and fish from the Polish coast of the Baltic Sea. Env Sci Pollut Res 6:200–206

    Google Scholar 

  • Karjalainen M (2005) Fate and effects of Nodularia spumigena and it’s toxin, Nodularin, in Baltic Sea planktonic food webs. Contributions Finnish Institute of Marine Research 10:2005

    Google Scholar 

  • Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters: A review. Oceanogr Mar Biol Ann Rev 40:427–489

    Google Scholar 

  • Kelly BP (2001) Climate change and ice breeding pinnipeds. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change: Adapted behaviour and shifting species’ ranges. Kluwer, New York London, pp. 43–55

    Google Scholar 

  • Kinze CC (1995) Exploitation of harbour porpoises (Phocoena phocoena) in Danish waters: a historical review. Rap Int Whal Comm Spec Issue 16:141–153

    Google Scholar 

  • Kirkkala T, Helminen H, Erkkilä A (1998) Variability of nutrient limitation in the Archipelago Sea, SW Finland. Hydrobiologica 363:117–126

    Google Scholar 

  • Köster FW, Möllmann C (2000a) Trophodynamic control by clupeid predators on recruitment success in Baltic cod? ICES J Mar Sci 57:310–323

    Google Scholar 

  • Köster FW, Möllmann C (2000b) Egg cannibalism in Baltic sprat Sprattus sprattus. Mar Ecol Prog Ser 196:269–277

    Google Scholar 

  • Köster FW, Schnack D (1994) The role of predation on early life stages of cod in the Baltic. Dana 10: 179–201

    Google Scholar 

  • Köster FW, Hinrichsen HH, St John MA, Schnack D, MacKenzie BR, Tomkiewicz J, and Plikshs M (2001) Developing Baltic cod recruitment models. II. Incorporation of environmental variability and species interaction. Can J Fish Aquat Sci 58:1534–1556

    Google Scholar 

  • Köster FW, Möllmann C, Neuenfeldt S, Vinther M, St John MA, Tomkiewicz J, Voss R, Hinrichsen HH, Kraus G, Schnack D (2003) Fish stock development in the Central Baltic Sea (1976–2000) in relation to variability in the physical environment. ICES Marine Science Symposia 219:294–306

    Google Scholar 

  • Köster FW, Möllmann C, Hinrichsen HH, Tomkiewicz J, Wieland K, Kraus G, Voss R, MacKenzie BR, Schnack D, Makarchouk A, Plikshs M, Beyer JE (2005) Baltic cod recruitment — the impact of climate variability on key processes. ICES J Mar Sci 62:1408–1425

    Google Scholar 

  • Kornilovs G (1995) Analysis of Baltic herring year-class strength in the Gulf of Riga. ICES CM 1995/J:10

    Google Scholar 

  • Kornilovs G, Sidrevics L, Dippner JW (2001) Fish and Zooplankton interaction in the Central Baltic Sea. ICES J Mar Sci 58: 579–588

    Google Scholar 

  • Koschinski S (2002) Current knowledge on harbour porpoises (Phocoena phocoena) in the Baltic Sea. Ophelia 55,3:167–197

    Google Scholar 

  • Koskinen P, Saari L, Nummi P, Pellikka J (2003) Kannan tiheys ja sääolot vaikuttavat lisääntymismenestykseen kyhmyjoutsenella (Stock density and weather conditions affect the reproduction success of the mute swan). Suomen Riista 49:17–24 (in Finnish)

    Google Scholar 

  • Kostrichina EM (1977) Long-term dynamics of Zooplankton in the Baltic sea in connection with the changes in water regime. In: Rybokhozyajstvennye issledovanija (BaltNIIRKH) Issue 13 Riga, “Zwaigzne”:70–77 (in Russian with English summary)

    Google Scholar 

  • Kostrichina E (1984) The dynamics of Zooplankton abundance and biomass in the south-eastern, eastern and north-eastern Baltic Articles on biological productivity of the Baltic Sea. Moscow 2:204–241 (in Russian)

    Google Scholar 

  • Kostrichina EM, Sidrevits LL (1977) Some regularities in Zooplankton distribution in the Baltic Sea by regions. In: Rybokhozyajstvennye issledovanija (BaltNIIRKH) Issue 13 Riga, “Zwaigzne”: 178–187 (in Russian with English summary)

    Google Scholar 

  • Kostrichina EM, Yurkovskis AK (1982) On the relation of the dynamics in Zooplankton abundance in the Baltic with phosphorus and Kattegat waters advection. In: Rybokhozyajstvennye issledovanija (BaltNIIRKH). Riga, Avots 17:3–10 (in Russian with English summary)

    Google Scholar 

  • Kotta J, Kotta I (1995) The state of macrozoobenthos of Pärmi Bay in 1991 as compared to 1959–1960. Proc Estonian Acad Sci Ecol 5:26–37

    Google Scholar 

  • Kousa H, Kuparinen J, Wikner J (1996) Pelagic Biology of the Gulf of Bothnia. In HELCOM 1996, hird Periodic Assessment of the State of the Baltic Sea, 1989–1993; Background document — Balt Sea Env Proc No 64 B, p. 40

    Google Scholar 

  • Kowalewska G, Konat J (1997) Distribution of polynuclear aromatic hydrocarbons (PAHs) in sediments of the southern Baltic Sea. Oceanologia 39:83–104

    Google Scholar 

  • Kremling K, Streu P (2000) Further evidence for a drastic decline of potentially hazardous trace metals in Baltic Sea surface waters. Mar Poll Bull 40:674–679

    Google Scholar 

  • Kremling K, Streu P (2001) The behavior of dissolved Cd, Co, Zn and Pb in North Atlantic nearsurface waters (30° N/60° W to 60° N/2° W). Deep-Sea Res I,48:2541–2567

    Google Scholar 

  • Kube J, Gosselck F, Powilleit M, Warzocha J (1997) Long-term changes in the benthic communities of the Pomeranian Bay (southern Baltic Sea). Helgoländer Meeresuntersuchungen 51:399–416

    Google Scholar 

  • Kuparinen J, Tuominen L (2001) Eutrophication and self-purification: Counteractions forced by large-scale cycles and hydrodynamic processes. Ambio 30:190–194

    Google Scholar 

  • Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Google Scholar 

  • Laine AO (2003) Disrtibution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuar Coast Shelf Sci 57:87–97

    Google Scholar 

  • Laine AO, Sandler H, Andersin AB, Stigzelius J (1997) Long-term changes of macrozoobenthos in the Eastern Gotland Basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. J Sea Res 38:135–159

    Google Scholar 

  • Lanning G, AS Cherkasiv, Sokolova IM (2006) Temperature-dependent effects of cadmium on mitochondrial and whole-organism bioenergetics in Oysters. Mar Environ Res 62:S79–82

    Google Scholar 

  • Larsson U, Elmgren R, Wulff F (1985) Eutrophication and the Baltic Sea: Causes and consequences. Ambio 14:9–14

    Google Scholar 

  • Lassig J, Niemi A (1978) Vertical distribution and diurnal fluctuations of Zooplankton in the Gotland Deep, June 1969. A Baltic year study. Kieler Meeresforsch 4:188–193

    Google Scholar 

  • Lavigne DM (2002) Harp seal. In: Perrins WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, New York

    Google Scholar 

  • Laws EA (2003) Partitioning of microbial biomass in pelagic aquatic communities: Maximum resiliency as a food web organizing construct. Aquat Microb Ecol 32:1–10

    Google Scholar 

  • Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Glob Biogeochem Cy 14,4:1231–1246

    Google Scholar 

  • Lee BG, Wallace WG, Luoma SN (1998) Uptake and loss kinetics of Cd, Cr and Zn in the bivalves Poamocorbula amurenis and Mamma balthica: Effects of size and salinity. Mar Ecol Prog Ser 175: 177–189

    Google Scholar 

  • Lee H, Swartz RC (1980) Biological processes affecting the distribution of pollutants in marine sediments. Part II. Biodeposition and Bioturbation. In: Baker RA (ed) Contaminants and Sediments, vol 2. Ann Arbor Science Publ, Ann Arbor, Michigan

    Google Scholar 

  • Lehikoinen E, Gustafsson E, Aalto T, Alho P, Laine J, Klemola H, Normaja J, Numminen T and Rainio K (2003a) Varsinais-Suomen Linnut Turun (Birds of SW-Finland). Lintutieteellinen Yhdistys ry, Turku

    Google Scholar 

  • Lehikoinen E, Lemmetyinen R, Vuorisalo T (2003b) Linnuston ja lintututkimuksen historia Varsinais-Suomessa (History of birdlife and bird research in SW-Finland) In: Lehikoinen E, Gustafsson E, Aalto T, Alho P, Laine J, Klemola H, Normaja J, Numminen T, Rainio K (Eds) Varsinais-Suomen Linnut Turun (Birds of SW-Finland). Lintutieteellinen Yhdistys ry, Turku (in Finnish)

    Google Scholar 

  • Lehikoinen E, Sparks T, Zalakevicius M (2004) Arrival and departure dates. In: Møller A, Fiedler W, Berthold P (2004) Birds and Climate Change. Adv Ecol Res 35:1–31

    Google Scholar 

  • Lehikoinen A, Kilpi M, Öst M (2006) Winter climate affects subsequent breeding success of common eiders. Glob Change Biol 12:1355–1365

    Google Scholar 

  • Lehtonen KK, Schiedek D (2006) Monitoring biological effects of pollution in the Baltic Sea: Neglected — but still wanted? Mar Poll Bull 53:377–386

    Google Scholar 

  • Lehtonen KK, Schiedek D, Koehler A, Lang T, Vuorinen PJ, Förlin L, Baršien? J, Pempkowiak J, Gercken J (2006) The BEEP project in the Baltic Sea: Overview of results and outlines for a regional biological effects monitoring strategy. Mar Pollut Bull 53:523–537

    Google Scholar 

  • Leipe T, Hille S, Voss M, Bartholdy J, Christiansen C (2005) Sedimentary records of environmental changes of the central Baltic Sea during the past 1000 years. Sopot (Poland), 5th Baltic Sea Science Congress

    Google Scholar 

  • Leonardsson K, Andersin AB, Mäkinen A, Rönnberg O (1997) Benthic biology. In: HELCOM (ed) Third periodic assessment of the State of the Baltic Sea, 1989–1993; Background document. Bait Sea Env Proc No 64 B, pp. 42–46

    Google Scholar 

  • Lepiksaar J (1986) The Holocene history of theriofauna in Fennoscandia and Baltic countries. Striae 24:51–70

    Google Scholar 

  • Leppäkoski E (1975) Assessment of degree of pollution on the basis of macrozoobenthos in marine and brackishwater environments. Acta Acad Aboensis B 35 2:1–90

    Google Scholar 

  • Leppäkoski E, Bonsdorff E (1989) Ecosystem variability and gradients: Examples from the Baltic Sea as a background for hazard assessment. In: Landner L (Ed) Chemicals in the aquatic environment: Advanced Hazard Assessment. Springer, Berlin Heidelberg New York, pp. 6–58

    Google Scholar 

  • Leppäkoski E, Olenin S (2001) The meltdown of biogeographical peculiarities of the Baltic Sea: The interaction of natural and man made processes. Ambio 30,4–5:202–209

    Google Scholar 

  • Leppäkoski E, Helminen H, Hänninen J, Tallqvist M (1999) Aquatic biodiversity under anthropogenic stress: An insight from the Archipelago Sea (SW Finland). Biodiversity and Conservation 8: 55–70

    Google Scholar 

  • Leppäkoski E, Gollasch S, Gruszka P, Ojaveer H, Olenin S, Panov V (2002) The Baltic — A sea of invaders. Can J Fis Aquat Sci 59:1175–1188

    Google Scholar 

  • Lima M, Jaksic FM (2004) The impacts of ENSO on terrestrial ecosystems: A comparision with NAO. In: Stenseth NC, Ottersen G, Hurrell JW, Belgrano A (eds) Marine Ecosystems and Climate variation. Oxford University Press

    Google Scholar 

  • Lindqvist C, Possnert G (1997) The subsistence economy and diet at Jakob/Ajvide, Eksta parish and other prehistoric dwelling and burial sites on Gotland in long-term perspective. In: Burenhult G (ed) Remote Sensing: Applied techniques for the study of cultural resources and the localization, identification and documentation of sub-surface prehistoric remains in Swedisch Arcaealogly. I Thesis and Papers in North-European Archaeology 19:a Hässleholm

    Google Scholar 

  • Lindström G (1855) Bidrag till kännedomom Östersjöns invertebratfauna (Contribution to knowledge of invertebrate fauna of the Baltic Sea). Öfversigt KVA:s Förh Arg 12 Stockholm:49–73 (in Swedish)

    Google Scholar 

  • Line R, Sidrevics L (1995) Zooplankton in the Gulf of Riga. In: Ojaveer E (ed) Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Academy Publishers, Tallinn, pp. 175–186

    Google Scholar 

  • Löugas L (1997) Post-glacial development of vertebrate fauna in Estonian water bodies. A paleozoological study. Dissertationes Biologicae Universitatis Tartuensis 32. Tartu University Press

    Google Scholar 

  • Luckenbach T, Corsi I, Epel D (2004) Fatal attraction: Synthetic musk fragrances comprise multixenobiotic defence systems in mussels. Mar Env Res 58:215–219

    Google Scholar 

  • Lumberg AJ (1976) On Zooplankton in the Guld of Finland. In: Rybokhozyajstvennye issledovanija (BaltNIIRKH) 12. Riga, “Zwaigzne” (in Russian with English summary)

    Google Scholar 

  • Lumberg A, Ojaveer E (1991) On the Environment and Zooplankton Dynamics in the Gulf of Finland in 1961–1990. Eesti Teaduste Akadeemia Toimetised. Ecology 40:131–140

    Google Scholar 

  • Lumberg A, Ojaveer H (1997) Zooplankton dynamics in Muuga and Kolga Bays in 1975–1992, with particular emphasis to the summer aspect. In: Ojaveer E (Ed) Proceedings of the 14th Baltic Marine Biologists Symposium, Pärmi, Estonia, 5–8 August 1995. Estonian Academy Publishers, Tallinn, pp. 139–148

    Google Scholar 

  • MacKenzie BRM, FW Köster (2004) Fish production and climate: Sprat in the Baltic Sea. Ecology 85,3:784–794

    Google Scholar 

  • MacKenzie BR, Hinrichsen HH, Plikshs M, Wieland K, Zezera AS (2000) Quantifying environmental heterogeneity: Estimating the size of habitat for successful cod egg development in the Baltic Sea. Mar Ecol Prog Ser 193:143–156

    Google Scholar 

  • MacKenzie, BR, Alheit J, Conley DJ, Holm P, and Kinze CC (2002a) Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Can J Fish Aquat Sci 59:173–190

    Google Scholar 

  • MacKenzie, BR, Awebro K, Bager M, Holm P, Lajus J, Must A, Ojaveer H, Poulsen B, and Uzars D (2002b) Baltic Sea fisheries in previous centuries: Development of catch data series and preliminary interpretations of causes of fluctuations. ICES CM 2002 (2002/L: 02)

    Google Scholar 

  • MacKenzie BR, Gislason H, Möllmann C, Köster FW (2007) Impact of fishing on fish biodiversity and the ecosystem of the Baltic Sea during climate change. Glob Change Biol 13:1–20 doi: 10.1111/j.1365-2486.2007.01369.x

    Google Scholar 

  • Mannermaa K (2002) Bird bones from Jettböle I, a site in the Neolithic Åland — Archipelago in the northern Baltic. Acta Zoologica Cracoviensia 45:85–98

    Google Scholar 

  • Marsh G, Athanasiadou M, Bergman A, Asplund L (2004) Identification of hydroxylated and methoxylated polybrominated diphenyl ethers in Baltic Sea salmon (Salmo salar) blood. Env Sci Technol 38:10–18

    Google Scholar 

  • Marshall CT, O’Brien L, Tomkiewicz J, Köster FW, Kraus G, Marteinsdottir G, Morgan MJ, Saborido-Rey F, Blanchard JL, Secor DH, Wright PJ, Mukhina NV, Björnsson H (2003) Developing Alternative Indices of Reproductive Potential for Use in Fisheries Management: Case Studies for Stocks Spanning an Information Gradient. J Northw Atl Fish Sci 33:161–190

    Google Scholar 

  • Matthäus W, Franck H (1992) Characteristics of major Baltic inflow — a statistical analysis, Cont Shelf Res 12:1375–1400

    Google Scholar 

  • Matthäus W, Lass HU (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25:280–286

    Google Scholar 

  • Matthäus W, Nausch G (2003) Hydrographic-hydrochemical variability in the Baltic Sea during the 1990s in relation to changes during the 20th century. ICES Marine Science Symposia 219:132–143

    Google Scholar 

  • McLusky DD, Bryant V, Campell R (1986). The effect of temperature and salinity on the toxicity of heavy metals to marine and estuarine invertebrates. Oceanogr Mar Biol Ann Rev 24:481–520

    Google Scholar 

  • Meier HEM, Döscher R, Halkka A (2004) Simulated distribututions of Baltic Sea-ice in warming climate and consequences for the Winter habitat of the Baltic Ringed Seal. Ambio 33,4–5:249–256

    Google Scholar 

  • Miettinen M, Halkka A, Högmander J, Keränen S, Mäkinen A, Nordström M, Nummelin J, Soikkeli M (2005) The ringed seal in the Archipelago sea, SW-Finland, population size and survey techniques. Symposium on Biology and Management of Seals in the Baltic area, Riistaja kalaraporteja 346

    Google Scholar 

  • Miller K, Irving I (1975) Metabolism and temperature regulation in young harbor seals (Phoca vitulina richardi) in water. Am J Physiol 229:509–511

    Google Scholar 

  • Milukaite A, Gulbinskas S (1997) Application of investigations of polycyclic aromatic hydrocarbons for the evaluation of sediments pollution in the Klaipeda Strait and the Baltic Sea coastal zone. Ekologija 2:44–49

    Google Scholar 

  • M0hl U (1970) Fangstdyrene ved de danske strande (Seal and whale hunting on the danish coasts). Den zoologiske baggrund for harpunerne. KUML. Årbok for Jysk arkælogisk selskab 1970. København 1971 (in Danish with English summary)

    Google Scholar 

  • Møller A, Fiedler W, Berthold P (eds) (2004) Birds and Climate Change. Advances in Ecological Research 35. Elsevier

    Google Scholar 

  • Molinero JC, Ibanez F, Nival P (2005) North Atlantic climate and northwestern Mediterranean plankton variability. Limnol Oceanogr 50:164–171

    Google Scholar 

  • Möllmann C, Köster FW (1999) Food consumption by clupeids in the Central Baltic: Evidence for top-down control? ICES J Mar Sci 56:100–113

    Google Scholar 

  • Möllmann C, Köster FW (2002) Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J Plankton Res 24:959–978

    Google Scholar 

  • Möllmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J Plankton Res 22:2015–2038

    Google Scholar 

  • Möllmann C, Köster FW, Kornilovs G, Sidrevics L (2002) Long-term trends in abundance of cladocerans in the Central Baltic Sea. Mar Biol 141:434–452

    Google Scholar 

  • Möllmann C, Köster FW, Kornilovs G, Sidrevics L (2003a) Interannual variability in population dynamics of calanoid copepods in the Central Baltic Sea. ICES Marine Science Symposia 219:220–230

    Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster FW, Hinrichsen HH (2003b) The marine copepod, Pseudocalanus elongatus, as a mediator between climate variability and fisheries in the Central Baltic Sea. Fish Oceanogr 12,4–5:360–368

    Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster FW (2004) Feeding ecology of central Baltic Sea herring and sprat. J Fish Biol 65:1563–1581

    Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster FW (2005) Climate, Zooplankton and pelagic fish growth in the Central Baltic Sea. ICES J Mar Sci 62:1270–1280

    Google Scholar 

  • Mudryk JM, Podgörska B, Bolalek J (2000) The occurrence and activity of sulphate-reducing bacteria in the bottom sediments of the Gulf of Gdansk. Oceanologia 42:150–217

    Google Scholar 

  • Nakashima B (1996) The relationship between oceanographie conditions in the 1990s and changes in spawning behaviour, growth and early life history of capelin (Mallotus villosus). NAFO Scientific Council Research Document 94/74:18

    Google Scholar 

  • Nausch G, Nehring D, Aertebjerg G (1999) Anthropogenic nutrient load of the Baltic Sea. Limnologica 29:233–241

    Google Scholar 

  • Nehring D (1984) The further development of the nutrient situation in the Baltic Proper. Ophelia Suppl 3:167–179

    Google Scholar 

  • Nehring D (1989) Phosphate and nitrate trends and the ratio oxygen consumption to phosphate accumulation in central Baltic deep waters with alternating oxic and anoxic conditions. Beiträge zur Meereskunde Berlin 59:47–58

    Google Scholar 

  • Nehring D (1990) Die hydrographisch-chemischen Bedingungen in der westlichen und zentralen Ostsee von 1979 bis 1988 — ein Vergleich (The hydrographic-chemical conditions in the western and central Baltic Sea from 1979 to 1988 — a comparison). Meereswiss Berichte des Instituts für Meereskunde, Warnemünde 2:3–45 (in German)

    Google Scholar 

  • Nehring S (1994) First living Alexandrium minutum resting cysts in Western Baltic. Harmful Algae News 9:1–2

    Google Scholar 

  • Nehring S (1997) Giftalgen. Der Dinoflagellat Gymnodinium catenatum (Toxic Algae. The dinoflagellate Gymnodinium catenatum). Mikrokosmos 86:151–156 (in German)

    Google Scholar 

  • Nehring S (1998) Establishment of thermophilic phytoplankton species in the North Sea: Biological indicators of climatic changes? J Mar Sci 55:818–823

    Google Scholar 

  • Nielsen E, Richardson K (1996) Can changes in fisheries yield in the Kattegat (1950–1992) be linked to changes in primary production? ICES J Mar Sci 53:988–994

    Google Scholar 

  • Nielsen E, Møller Hansen M, Schmidt C, Meldrup D, and Grønkjær P (2001) Genetic differences among cod populations. Nature 413:272

    Google Scholar 

  • Nilsson L (1980) Wintering diving duck populations and available food resources in the Baltic Wildfowl 31:131–143

    Google Scholar 

  • Nilsson P, Jansson M, Brydsten L (2003) Retention and long term accumulation of EOCI from pulp mill effluents in a Baltic Sea recipient. Water Air Soil Pollut 143:225–243

    Google Scholar 

  • Nissling A (1994) Survival of eggs and yolk-sac larvae of Baltic cod (Gadus morhua L) at low oxygen levels in different salinities. ICES Marine Science Symposium 198:626–631

    Google Scholar 

  • Nissling A (2004) Effects of temperature on egg and larval survival of cod (Gadus morhua) and sprat (Sprattus sprattus) in the Baltic Sea — implications for stock development. Hydrobiologia 514:115–123

    Google Scholar 

  • Nissling A, Westin L (1997) Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea. Mar Ecol Prog Ser 152:261–271

    Google Scholar 

  • Nissling A, Kryvi H, Vallin L (1994) Variation in egg buoyancy of Baltic cod Gadus morhua and its implications for egg survival in prevailing conditions in the Baltic Sea. Mar Ecol Prog Ser 110:67–74

    Google Scholar 

  • Nissling A, Larsson R, Vallin L, Frohlund K (1999) Assessment of egg and larvalviability in cod, Gadus morhua — methods and results from an experimental study. Fish Res 38:169–186

    Google Scholar 

  • Nissling A, Müller A, Hinrichsen HH (2003) Specific gravity and vertical distribution of sprat (Sprattus sprattus) eggs in the Baltic Sea. J Fish Biol 63:280–299

    Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41:199–219

    Google Scholar 

  • Nürnberg GK (1984) The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol Oceanogr 29:111–124

    Google Scholar 

  • Nyman M, Bergknut M, Fant ML, Raunio H, Jestoi M, Bengs C, Murk A, Koistinen J, Backman C, Pelkonen O, Tysklind M, Hirvi T, Helle E (2003) Contaminant exposure and effects in Baltic ringed and grey seals as assessed by biomarkers. Mar Environ Res 55:73–99

    Google Scholar 

  • Ojaveer E, Lumberg A, Ojaveer H (1998) Highlights of Zooplankton dynamics in Estonian waters (Baltic Sea). ICES J Mar Sci 55:748–755

    Google Scholar 

  • Ojaveer H, Simm H, Lankov A (2004) Population dynamics and ecological impacts of the nonindigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia 522:261–269

    Google Scholar 

  • Olenin S (1997) Benthic zonation of the Eastern Gotland Basin. Neth J Aquat Ecol 30,4:265–282

    Google Scholar 

  • Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–935

    Google Scholar 

  • Oswald S, Huntley B, Hamer KC (2004) Exploring the impact of climate on the distribution of great skuas breeding in the UK. Abstract, 8th International Seabird Group Conference, Aberdeen, 2–4 April 2004

    Google Scholar 

  • Otterlind G (1984) On fluctuations of the Baltic cod stock. ICES CM 1984/J:14

    Google Scholar 

  • Ottersen G, Stenseth NC, Hurrell JW (2004) Climatic fluctuations and marine systems: A general introduction to the ecological effects. In: Stenseth NC, Ottersen G, Hurrell JW, Belgrano, A (eds) Marine Ecosystems and Climate Variation. Oxford University Press

    Google Scholar 

  • Paerl H, Gallucci K (1985) Role of chemotaxis in establishing a specific cyanobacterial-bacterial association. Science 227:647–649

    Google Scholar 

  • Palo JU, Mäkinen HS, Helle E, Stenman O, Väinölä R (2001) Microsatellite variation in ringed seals (Phoca hispida): Genetic structure and history of the Baltic population. Heredity 86:609–617

    Google Scholar 

  • Parmanne R, Rechlin O, Sjöstrand B (1994) Status and future of herring and sprat stocks in the Baltic Sea. Dana 10:29–59

    Google Scholar 

  • Partensky F, Sournia A (1986) Le dinoflagellé Gyrodinium cf aureolum dans le plancton de l’Atlantique nord: identification, écologie, toxicité (The dinoflagellate Gyrodinium cf aureolum in the plankton of the North Atlantic: Identification, ecology, toxicity). Cryptogamie Algologie 7:251–275 (in French)

    Google Scholar 

  • Pauly D (1995) Anecdotes and shifting baseline syndrome of fisheries. TREE 10:430

    Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres FJr (1998) Fishing down marine food webs. Science 279:860–863

    Google Scholar 

  • Pearson TH (2001) Functional group ecology in soft-sediment marine benthos: The role of bioturbation. Oceanogr Mar Biol Ann Rev 39:233–268

    Google Scholar 

  • Persson LE (1981) Were macrobenthic changes induced by thinning out of flatfish stocks in the Baltic Proper? Ophelia 20,2:137–152

    Google Scholar 

  • Persson LE (1987) Baltic eutrophication: A contribution to the discussion. Ophelia 27,1:31–42

    Google Scholar 

  • Pershing AJ, Greene CH, Planque B, Fromentin JM (2004) The influences of climate variability on North Atlantic Zooplankton populations. In: Stenseth NC, Ottersen G, Hurrell JW, Belgrano A (eds) Marine Ecosystems and Climate Variation. The North Atlantic: A Comparative Perspective. University Press, Oxford

    Google Scholar 

  • Perus J, Bonsdorff E (2003) Long-term changes in macrozoobenthos in the Aland archipelago, northern Baltic Sea. J Sea Res 52:45–56

    Google Scholar 

  • PEX (1989) Baltic Sea Patchiness Experiment — PEX 86 Part 1 (1,2) General report. ICES Cooperative Research Report 163

    Google Scholar 

  • Pfeifer S, Schiedek D, Dippner JW (2005) Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp from the south-western Baltic Sea. J Exp Mar Biol Ecol 320:93–103

    Google Scholar 

  • Piatt J, Pelt T (1997) Mass-mortality of Guillemots (Uria aalge) in the Gulf of Alaska in 1993. Mar Pollut Bull 34:656–662

    Google Scholar 

  • Piskorska-Pliszczynska J, Grochowalski A, Wijaszka T, Kowalski B (2004) Levels of PCDD and PCDF in fish edible tissues from Polish coastal waters. Organohalogen Compounds 66:1947–1951

    Google Scholar 

  • Pitkänen H, Kangas P, Miettinen V, and Ekholm P (1987) The state of the Finnish coastal waters in 1979–1983. Vesija ympäristöhallinnon julkaisuja 8

    Google Scholar 

  • Pohl C, Hennings U (1999) The effect of redox processes on the partitioning of Cd, Pb, Cu, and Mn between dissolved and particulate phases in the Baltic Sea. Mar Chem 65:41–53

    Google Scholar 

  • Pohl C, Kattner G, Schulz-Baldes M (1993) Cadmium, copper, lead and zinc on transects through Arctic and Eastern Atlantic surface and deep waters. J Mar Syst 4:17–29

    Google Scholar 

  • Pomeroy LR, Deibel D (1986) Temperature regulation of bacterial activity during spring bloom in Newfoundland coastal waters. Science 233:359–361

    Google Scholar 

  • Pomeroy LR, WJ Wiebe (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microb Ecol 23:187–204

    Google Scholar 

  • Pope JG, Macer CT (1996) An evaluation of the stock structure of North Sea cod, haddock, and whiting since 1920, together with a consideration of the impacts of fisheries and predation effects onthe biomass and recruitment. ICES J Mar Sci 53:1157–1169

    Google Scholar 

  • Pouchet G, de Guerne J (1885) Sur la faune pelagique de la mer Baltique et du Golfe de Finlande (On the pelagic fauna of the Baltic Sea and the Gulf of Finland). Compt Rend Seances Acad Sciences 100:919–921 (in French)

    Google Scholar 

  • Poutanen EL, Nikkilä K (2001) Carotenoid pigments of tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio 30:179–183

    Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Google Scholar 

  • Ramos JA, Maul AM, Ayrton V, Bullock I, Hunter J, Bowler J, Castle G, Mileto R, Pacheco C (2002) Influence of local and large-scale weather events and timing of breeding on tropical roseate tern reproductive parameters Mar Ecol Prog Ser 243: 271–279

    Google Scholar 

  • Ranta E, Vuorinen I (1990) Changes in species abundance relations in marine meso-Zooplankton at Seili, Northern Baltic Sea, in 1967–1975. Aqua Fennica 20:171–180

    Google Scholar 

  • Rasmussen H, Jørgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: Role of molecular diffusion. Mar Ecol Progr Ser 81:289–303

    Google Scholar 

  • Reeves RR (1998) Distribution, abundance and biology of ringed seals (Phoce hispida): An overview. NAMMCO Sci Publ 1:9–45

    Google Scholar 

  • Regehr H, Rodway M (1999) Seabird breeding performance during two years of delayed Capelin arrival in the Northwest Atlantic: A multi-species comparison. Waterbirds 22:60–67

    Google Scholar 

  • Rehfisch MM, Feare CJ, Jones NV, Spray C (eds) (2004) Climate Change and Coastal Birds. Ibis 146(Suppl 1)

    Google Scholar 

    Google Scholar 

  • Reijnders PJH (2003) Reproductive and developmental effects of environmental organochlorines on marine mammals. In: Vos J, Bossart G, Fournier M, O’Shea T (eds) Toxicology of Marine Mammals. Taylor & Francis LTD, London, pp. 55–56

    Google Scholar 

  • Remane A (1940) Einführung in die zoologische Ökologie der Nord-und Ostsee. Die Tierwelt der Nord-und Ostsee (Introduction to Zoological Ecology of the North and Baltic Sea), vol. I. Becker & Ehler, Leipzig, pp. 1–238 (in German)

    Google Scholar 

  • Remane A, Schlieper K (1958) Die Biologie des Brackwassers. Die Binnengewässer (The Biology of the Brackish Water. The Inland Waters), vol. 22. E Schweizerbart’sche Verlagsbuchhandlung, Nägele u Obermiller, Stuttgart (in German)

    Google Scholar 

  • Renssen H, Goosse H, Fichefet T, Brovkin V, Driesschaert E, Wölk F (2005) Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere — sea ice — ocean-vegetation model. Clim Dyn 24:23–43

    Google Scholar 

  • Renz J, Hirche HJ (2006) Life-cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the central Baltic Sea: I. Seasonal and spatial distribution. Mar Biol 148:567–580

    Google Scholar 

  • Rice DL (1986) Early Diagenesis in Bioadvective Sediments: Relationships between the Diagenesis of Beryllium-7, Sediment Reworking Rates, and the Abundance of Conveyor-Belt Deposit-Feeders. J Mar Res 44,1:149–184

    Google Scholar 

  • Rindorf A, Wanless S, Harris MP (2000) Effects of changes in sandeel availability on the reproductive output of seabirds. Mar Ecol Prog Ser 202:241–252

    Google Scholar 

  • Rönkä M, Saari L, Lehikoinen E, Suomela J, Häkkilä K (2005) Environmental changes and population trends of waterfowl. Ann Zool Fenn 42:587–602

    Google Scholar 

  • Rönkkönen S, Ojaveer E, Raid T, Viitasalo M (2004) Long-term changes in Baltic herring (Clupea harengus membras) growth in the Gulf of Finland. Can J Fish Aquat Sci 61:219–229

    Google Scholar 

  • Rönner U, Sörensen F (1985) Denitrification rates in the low-oxygen waters of the stratified Baltic proper. Appl Environ Microbiol 50: 801–806

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on plants and animals. Nature 421:57–60

    Google Scholar 

  • Roots O (2003) Environmental levels of PTS in Estonia. Background document for the 2nd Technical Workshop of UNEP/GEF Project Regional Based Assessment of Persistent Toxic Substances — Region III — Europe TOCOEN REPORT No 243, Brno

    Google Scholar 

  • Ross PS, De Swart RL, Reijnders PJH, van Loveren H, Vos JG, Osterhaus ADME (1995) Contaminant-related suppression of delayed type hypersenisitivity and antibody responses in harbour seals fed herring from the Baltic Sea. Environ Health Perspectives 103:162–167

    Google Scholar 

  • Rothe F (1941) Quantitative Untersuchungen über die Planktonverteilung in der östlichen Ostsee (Quantitative investigations on the plankton distribution in the eastern Baltic Sea). Berichte der deutschen wissenschaftlichen Kommission für Meeresforschung, Neue Folge 103:291–368 (in German)

    Google Scholar 

  • Routti H, Nyman M, Bäckman C, Koistinen J, Helle E (2005) Accumulation of dietary organochlorines and vitamins in Baltic seals. Mar Env Res 60:267–287

    Google Scholar 

  • Rudstam LG, Aneer G, Hildén M (1994) Top down control in the pelagic Baltic ecosystem. Dana 10: 105–129

    Google Scholar 

  • Rumohr H (1987) A. Hameier’s contribution to our knowledge of the benthos of the Baltic. Mitteilungen aus dem Zoologischen Museum der Universität Kiel, II,5:1–32

    Google Scholar 

  • Russak V (1994) Is the Radiation Climate in the Baltic Sea Region Changing. Ambio 23:160–163

    Google Scholar 

  • Sahrhage D, Lundbeck J (1992) A history of fishing. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sandén P, Håkansson B (1996) Long-term trends in Secchi depth in the Baltic Sea. Limnol Oceanogr 4:346–351

    Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    Google Scholar 

  • Schinke H, Matthäus W (1998) On the causes of major Baltic inflows — an analysis of long time series — trends, errors and discontinuities. Cont Shelf Res 18,1:67–97

    Google Scholar 

  • Schneider R, Schiedek D, Petersen GI (2000) Baltic cod reproductive impairment: Ovarian organochlorine levels, hepatic EROD activity, development success of eggs and larvae, challenge tests. ICES CM 2000/S:09

    Google Scholar 

  • Schnell S, Schiedek D, Schneider R, Balk L, Vuorinen PJ, Vuontisjärvi H, Lang T (2003) Some indications of contaminant effects on Baltic cod (Gadus morhua L). ICES CM2003/M:09,1–12

    Google Scholar 

  • Segerstråle SG (1957) Baltic Sea. In: Hedgepeth JW (Ed) Treatise on Marine Ecology and Paleoecology. Geol Soc America Memoir 67:751–800

    Google Scholar 

  • Segerstråle SG (1969) Biological fluctuations in the Baltic Sea. Prog Oceanogr 5:169–184

    Google Scholar 

  • Selin H, VanDeveer SD (2004) Baltic Sea hazardous substances management: Results and challenges. Ambio 33:153–160

    Google Scholar 

  • Shapiro J (1990) Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and pH. Verh Int Verein Limnol 24:38–54

    Google Scholar 

  • Shurin AT (1968) Status of bottom fauna during period from 1900 to 1962 in the changing conditions of the Baltic Sea. In: Fishery Research (Rybokhozyaistvennye Issledovaniya, Baltniirkh) Riga, Zvaigzne 4:61–88 (in Russian)

    Google Scholar 

  • Sidrevits LL (1980) Investigation on ecological characteristics of main Zooplankton species in the central Baltic. In: Rybokhozyajstvennye issledovanija (BaltNIIRKH), Riga, Avots 65–70 (in Russian with English summary)

    Google Scholar 

  • Simm MA (1976) On Zooplankton. Ecology in the Bay of Pyarny. In: Rybokhozyajstvennye issledovanija (BaltNIIRKH). Issue 12. Riga, “Zwaigzne”, pp. 29–43 (in Russian with English summary)

    Google Scholar 

  • Sjöblom V (1961) Wanderungen des Strömlings (Clupea harengus L) in einigen Schären-und Hochseegebieten der Nördlichen Ostsee (Migration of the herring (Clupea harengus L) in archipelagos and open waters of the northern Baltic Sea). Merentutkimuslaitoksen Julk./Havsforskningsinstitutets Skr 199 (in German)

    Google Scholar 

  • Skei J, Larsson P, Rosenberg R, Jonsson P, Olsson P and Broman D (2000) Eutrophication and Contaminants in Aquatic Ecosystems. Ambio 29,4:184–194

    Google Scholar 

  • Skov H, Durinck J (2000) Seabird distribution in relation to hydrography in the Skagerrak. Cont Shelf Res 20,2:169–187

    Google Scholar 

  • Smith TG, Stirling I (1975) The breeding habitat of the ringed seal (Phoca hispida). The birth lair and associated structures. Can J Zool 53:1297–1305

    Google Scholar 

  • Smith TG, Hammill MO, Taugbøl G (1991) A review of the developmental, behavioural and physiological adaptations of the ringed seal, Phoca hispida, to life in Arctic winter. Arctic 44,2:124–131

    Google Scholar 

  • Sokolov LV, Markovets MY, Shapoval AP, Morozov YG (1998) Long-term trends in the timing of spring migration of passerines on the Courish Spit of the Baltic Sea. Avian Ecol Behav 1:1–21

    Google Scholar 

  • Somero G (2005) Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits. Front Zool 2, doi:10.1186/1742-9994-2-1

    Google Scholar 

  • Sparholt H (1994) Fish species interactions in the Baltic Sea. Dana 10:131–162

    Google Scholar 

  • Sparholt H, Jensen IB (1992) The effect of cod predation on the weight-at-age of herring in the Baltic. ICES Marine Science Symposia 195:448–491

    Google Scholar 

  • Sparks TH, Bairlein F, Bojarinova JG, Hüppop O, Lehikoinen EA, Rainio K, Sokolov LV, Walker D (2004) Examining the total arrival distribution of migratory birds. Glob Change Biol 11:22–30

    Google Scholar 

  • Stal LJ, Albertano P, Bergman B, von Bröckel K, Gallon JR, Hayes PK, Sivonen K, and Walsby AE (2003) BASIC: Baltic Sea Cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea — responses to a changing environment. Cont Shelf Res 23: 1695–1714

    Google Scholar 

  • Stal LJ, Staal M, Villbrandt M (1999) Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat Microb Ecol 18:165–173

    Google Scholar 

  • Stålnacke P, Grimvall A, Sundblad K, Tonderski A, (1999) Estimation of Riverine Loads of Nitrogen and Phosphorus to the Baltic Sea, 1970–1993. Env Monit Assess 58:173–200

    Google Scholar 

  • Stenman O (1990) Hyljekuolemat itäisellä Suomenlahdella vähäjäisen talven 1988–1989 seurauksena (Seal deaths in the eastern Gulf of Finland as a consequence to scarcity of of ice in the winter 1988–1989). Kalamies 4:12–13 (in Finnish)

    Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Belgrano A (2004) Marine Ecosystems and Climate variation. Oxford University Press

    Google Scholar 

  • Stirling I, Smith TG (2004) Implications of warm temperatures, and an unusual rain event for the survival of ringed seals on the coast of southeastern Baffin Island. Arctic 57,1:59–67

    Google Scholar 

  • Storå J (2002) Seal hunnting on Ajvide: A taphonomic study of seal remains from a pitted ware culture site on Gotland. In: Burenhult G (ed) Remote sensing, vol. II. Theses and papers in North-European Archaeology 13:b

    Google Scholar 

  • Storå J, Ericson PGP (2004) A prehistoric breeding population of harp seals (Phoca groenlandica) in the Baltic sea. Mar Mamm Sci 20,1:115–133

    Google Scholar 

  • Storå J, Lõugas L (2005) Human exploitation and history of seals in the Baltic during the late Holocene. In: Monks G (ed) The exploitation and cultural importance of sea mammals. Oxbow Books, Oxford, pp. 95–106

    Google Scholar 

  • STORE (2003) Environmental fisheries influences on fish stock recruitment in the Baltic Sea. EU-Project FAIR CT98 3959, Final Report

    Google Scholar 

  • Storstr0ms Amt, Teknikog Miljøforvaltningen, Vandmiljøkontoret (2002) The “Baltic Carrier” Oil Spill Monitoring and Assesment of Environmental Effects in Grønsund (DK)

    Google Scholar 

  • Strand J, Jacobsen JA (2002) Imposex in two sublittoral neogastropods from the Kattegat and Skagerrak: The common whelk Buccinum undatum and the red whelk Neptunea antiqua. Mar Ecol Prog Ser 244:171–177

    Google Scholar 

  • Strand J, Jacobsen JA, Pedersen B, Granmo A (2003) Butyltin compounds in sediment and molluscs from the shipping strait between Denmark and Sweden. Environ Pollut 124:7–15

    Google Scholar 

  • Struck U, Pollehne F, Bauerfeind E, von Bodungen B (2004) Sources of nitrogen for the vertical particle flux in the Gotland Sea (Baltic Proper) — results from sediment trap studies. J Mar Syst 45:91–101

    Google Scholar 

  • Suikkanen S, Laamanen M, Huttunen M (2007) Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar Coast Shelf Sci 71,2–4:580–592

    Google Scholar 

  • Szefer P (2002) Metal pollutants and radionuclides in the Baltic Sea — an overview. Oceanologica 44: 129–178

    Google Scholar 

  • Teilmann J, Lowry N (1996) Status of the harbour porpoise (Phocoena phocoena) in Danish waters. Rep Int Whal Commn 46:619–625

    Google Scholar 

  • Thamdrup B, Hansen JW, BB Jørgensen (1998) Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol Ecol 25:189–200

    Google Scholar 

  • Theede H (1984) Ökosystem Ostsee verändert sich ständig. (The Baltic Sea ecosystem is constantly changing) Naturwiss Rundschau 37:225–227 (in German)

    Google Scholar 

  • Theede H, Ponat A, Hiroki K, Schlieper C (1969) Studies on the resistance of marine bottom invertebrates to oxygen-defiency and hydrogen sulphide. Mar Biol 2:325–337

    Google Scholar 

  • Thomas LD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    Google Scholar 

  • Thurow F (1997) Estimation of the total fish biomass in the Baltic Sea during the 20th century. ICES J Mar Sci 54:444–461

    Google Scholar 

  • Toresen R, Østvedt OJ (2000) Variation in abundance of Norwegian spring spawning herring (Clupea harengus, Clupeidae) throughout the 20th century and the influence of climatic fluctuations. Fish Fish 1:231–256

    Google Scholar 

  • Tortell PD, Reinfelder JR, Morel FMM (1997) Active uptake of bicarbonate by diatoms. Nature 390:243–244

    Google Scholar 

  • Tuomi T, Kuupo P (1999) Viral lysis and grazing loss of bacteria in nutrient-and carbon-manipulated brackish water enclosures. J Plankton Res 21:923–937

    Google Scholar 

  • Tynan CT, DeMaster DP (1997) Observations and predictions of Arctic climate change: Potential effects on marine mammals. Arctic 50,4:308–322

    Google Scholar 

  • Ukkonen P (2002) The early history of seals in the northern Baltic. Ann Zool Fenn 39:187–207

    Google Scholar 

  • UNEP (2002) Europe Regional Report: Regionally based assessment of persistent substances. GE03-00167-January 2003-500, UNEP/CHEMICALS/2003/3, pp. 142

    Google Scholar 

  • Vähätalo A, Rainio K, Lehikoinen A, Lehikoinen E (2004) Spring arrival of birds depends on North Atlantic Oscillation. J Avian Biol 35:210–216

    Google Scholar 

  • Vallin L, Nissling A (2000) Maternal effects on egg size and egg buoyancy of Baltic cod, Gadus morhua: Implications for stock structure effects on recruitment. Fish Res 49:21–37

    Google Scholar 

  • Vallin L, Nissling A, Westin L (1999) Potential factors influencing reproductive success of Baltic cod, Gadus morhua: A review. Ambio 28:92–99

    Google Scholar 

  • Viitasalo M (1992) Mesozooplankton in the Gulf of Finland and Northern Baltic Proper — a review of monitoring data. Ophelia 35:146–168

    Google Scholar 

  • Viitasalo M, Katajisto T, Vuorinen I (1994) Seasonal dynamics of Acartia bifilosa and Eurytemora affinis (Copepoda, Calanoida) in relation to abiotic factors in the northern Baltic Sea. Hydrobiol 292/293:415–422

    Google Scholar 

  • Viitasalo M, Vuorinen I, Saesmaa S (1995) Mesozooplankton dynamics in the northern Baltic Sea: Implications of variations in hydrography and climate. J Plankton Res 17:1857–1878

    Google Scholar 

  • Voipio A (1981) The Baltic Sea. Elsevier, Amsterdam

    Google Scholar 

  • Voss M, Emeis KC, Hille S, Neumann T, Dippner JW (2005) The nitrogen cycle of the Baltic Sea from an isotopic perspective. Glob Biogeochem Cy 19, GB3001, doi:10.1029/2004GB002338

    Google Scholar 

  • Voss R, Köster FW, Dickmann M (2003) Comparing the feeding habits of co-occuring sprat (Sprattus sprattus) and cod (Gadus morhua) larvae in the Bornholm Basin, Baltic Sea. Fish Res 63:97–111

    Google Scholar 

  • Voss R, Clemmesen C, Baumann H, Hinrichsen HH (2006) Baltic sprat larvae: Coupling food availability, larval condition and survival. Mar Ecol Prog Ser 308:243–254

    Google Scholar 

  • Vuorinen I, Ranta E (1987) Dynamics of marine mesozooplankton at Seili, Northern Baltic Sea, in 1967–1975. Ophelia 28,1:31–48

    Google Scholar 

  • Vuorinen I, Ranta E (1988) Can signs of eutrophication be found in the mesozooplankton of Seili, Archipelago Sea? Kieler Meeresforsch Sonderh 6:126–139

    Google Scholar 

  • Vuorinen I, Hänninen J, Viitasalo M, Helminen U, Kuosa H (1998) Proportion of copepod biomass declines together with decreasing salinities in the Baltic Sea. ICES J Mar Sci 55:767–774

    Google Scholar 

  • Vuorinen I, Hänninen J, Kornilovs G (2003) Transfer-function modelling between environmental variation and mesozooplankton in the Baltic Sea. Prog Oceanogr 59:339–356

    Google Scholar 

  • Vuorinen I, Hänninen J, Kornilovs G (2004) Erratum to: Transfer-function modelling between environmental variation and mesozooplankton in the Baltic Sea. Prog Oceanogr 59:339–356

    Google Scholar 

  • Wasmund N (1994) Phytoplankton Periodicity in a Eutrophic Coastal Water of the Baltic Sea. Int Rev Ges Hydrobiol 79:259–285

    Google Scholar 

  • Wasmund N (1996) Periodicity and trends in the phytoplankton of a shallow coastal water. Proceedings of the 13th Symposium of the Baltic Marine Biologists: 63–66

    Google Scholar 

  • Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int Rev Ges Hydrobiol 82:169–184

    Google Scholar 

  • Wasmund N (2002) Harmful algal blooms in coastal waters of the south-eastern Baltic Sea. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems. Springer, Berlin Heidelberg New York, pp. 93–116

    Google Scholar 

  • Wasmund N, Uhlig S (2003) Phytoplankton trends in the Baltic Sea. ICES J Mar Sci 60:177–186

    Google Scholar 

  • Wasmund N, Nausch G, Matthäus W (1998) Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J Plankton Res 20:1099–1117

    Google Scholar 

  • Wasmund N, Voss M, Lochte K (2001) Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar Ecol Prog Ser 214: 1–14

    Google Scholar 

  • Wieland K, Zuzarte F (1991) Vertical distribution of cod and sprat eggs and larvae in the Bornholm Basin (Baltic Sea) 1987–1990. ICES CM 1991/J:37

    Google Scholar 

  • Wieland K, Waller U, Schnack D (1994) Development of Baltic cod eggs at different levels of temperature and oxygen content. Dana 10:163–177

    Google Scholar 

  • Wieland K, Jarre-Teichmann A, Horbowa K (2000) Changes in the timing of spawning of Baltic cod: Possible causes and implications for recruitment. ICES J Mar Sci 57:452–464

    Google Scholar 

  • Wikner J (2006) Bacterioplankton growth rate. HELCOM Indicator Fact Sheets 2006, http://www.hel-com.fi/environment2/ifs/ifs2006/en_GB/cover/

  • Wikner J, Hagström Å (1999) Bacterioplankton intra-annual variability: Importance of hydrology and competition. Aquat Microb Ecol 20:245–260

    Google Scholar 

  • Wiltshire KH, Manly BFJ (2004) The warming trend at Helgoland Roads, North Sea: Phytoplankton response. Helgol Mar Res 58:269–273

    Google Scholar 

  • Witt G, Trost E (1999) Polycyclic aromatic hydrocarbons (PAHs) in sediments of the Baltic Sea and of the German coastal waters. Chemosphere 38:1603–1614

    Google Scholar 

  • Wodarg D, Komp P, McLachlan MS (2004) A baseline study of polychlorinated biphenyl and hexachlorobenzene concentrations in the western Baltic Sea and Baltic Proper. Mar Chem 87:23–36

    Google Scholar 

  • Wright DA (1995) Trace metals and major ion interactions in aquatic animals. Mar Pollut Bull 31: 8–18

    Google Scholar 

  • Wulff F, Rahm L (1993) Accumulation of chlorinated organic matter in the Baltic Sea from 50 years of use — A threat to the environment. Mar Pollut Bull 26:272–275

    Google Scholar 

  • WWF (2005) Clean Baltic within reach? Baltic Ecoregion Action Programme

    Google Scholar 

  • Yurkovskis A (1998) Course and environmental consequences of eutrophication in the Gulf of Riga. Proc Latvian Acad Sci, Section B (suppl) 52:56–61

    Google Scholar 

  • Zajaczkowski MJ, Legezynska J (2001) Estimation of Zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341–351

    Google Scholar 

  • Zmudzinski L (1978) The Evolution of Macrobenthic Deserts in the Baltic Sea. XI Conference of Baltic Oceanographers, vol. 2. Rostock, pp. 780–794

    Google Scholar 

  • Zmudzinski L, Osowiecki A (1991) Long-term changes in macrozoobenthos of the Gdansk Deep. Int Rev Ges Hydrobiol 76,3:465–471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dippner, J.W. et al. (2008). Climate-related Marine Ecosystem Change. In: Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72786-6_5

Download citation

Publish with us

Policies and ethics