Skip to main content

Oblique Convergence along the Chilean Margin: Partitioning, Margin-Parallel Faulting and Force Interaction at the Plate Interface

  • Chapter
The Andes

Abstract

The Chilean fore-arc exhibits margin-parallel strike-slip faulting and associated fore-arc sliver formation. Comparison of the long-term (geologic timescale) and short-term (human timescale) record of margin-parallel faulting along the oblique Chilean subduction margin between 15° S and 46° S reveals significant spatio-temporal heterogeneity. We have reviewed newly compiled data on the geometric, kinematic and mechanical properties and their variation along-strike of the Chilean margin and evaluated their competing influence on fore-arc deformation. Among the parameters considered are the plate kinematics (e.g., convergence obliquity and rate), overriding plate heterogeneities that affect its capability for localizing horizontal shear (e.g., thermal and structural weaknesses) or resistance to block motion (e.g., plate margin curvature) as well as properties governing or indicating force interaction at the plate interface (e.g., trench sediment-fill, geodetic and seismic coupling depth). Most remarkably, the short-term GPS-derived fore-arc velocity field, dominated by elastic loading processes, shows little variation along-strike of the margin, despite the significantly changing conditions (e.g., trench sediment-fill, mass transfer mode at the tip of the overriding plate, plateau or no plateau, and slab-dip variations). Variations in recent and past strike-slip motion do not appear to depend on the rate or obliquity of convergence, nor on the mode of mass transfer at the subduction front. The frictionally coupled area on the plate contact increases southwards and a decreasing taper along the Chilean margin can be reconciled in the framework of taper theory by a southward decrease of the effective coefficient of friction on the plate interface. The development of fore-arc slivers seems to be primarily controlled by mechanisms that cause effective rheological weakening of parts of the upper plate and/or by geometries that hamper margin-parallel sliver motion. While the seaward concave-shaped margin in North Chile hinders the margin-parallel motion of a fore-arc sliver, the present strike-slip activity of the Liquiñe-Ofqui Fault Zone in southern Chile is likely facilitated by the superposition of two conditions: a shallowly dipping slab and an exceptionally small arc to trench distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abels A, Bischoff L (1999) Clockwise block rotations in northern Chile: indications for a large-scale domino mechanism during the middle-late Eocene. Geology 27(8):751–754

    Article  Google Scholar 

  • Adam J, Reuther CD (2000) Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean Forearc. Tectonophysics 321:297–325

    Article  Google Scholar 

  • Adam J, Klaeschen D, Kukowski N, Flueh E (2004) Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics 23(3): doi 10.1029/2002TC001475

    Google Scholar 

  • ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the Central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J Geophys Res 108(B7): doi 10.1029/2002JB001771

    Google Scholar 

  • Anderson OB, Knudsen P (1998) Global marine gravity field from ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 103: 8129–8137

    Article  Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334

    Article  Google Scholar 

  • Arancibia G, Cembrano J, Lavenu A (1999) Dextral transpression and deformation partitioning in the Liquine-Ofqui Fault Zone, Aisen, Chile (44–45°S). Rev Geologica Chile 21(1):3–22

    Google Scholar 

  • Armijo R, Thiele R (1990) Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary. Earth Planet Sci Lett 98:40–61

    Article  Google Scholar 

  • Arriagada C, Roperch P, Mpodozis C (2000) Clockwise block rotations along the eastern border of the Cordillera de Domeyko, Northern Chile (22°45′–23°30′S). Tectonophysics 326:153–171

    Article  Google Scholar 

  • Arriagada C, Roperch P, Mpodozis C, Dupont Nivet G, Cobbold PR, Chauvin A, Cortés J (2003) Paleogene clockwise tectonic rotations in the forearc of central Andes, Antofagasta region, northern Chile. J Geophys Res 108(B1): doi 10/1029/2001JB001598

    Google Scholar 

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–503

    Article  Google Scholar 

  • Barrientos SE, Ward SN (1990) The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys J Int 103:589–598

    Google Scholar 

  • Barrientos SE, Acevedo Aránguiz PS (1992) Seismological aspects of the 1988–1989 Lonquimay (Chile) volcanic eruption. J Volcanol Geotherm Res 53:73–87

    Article  Google Scholar 

  • Barrier E, Huchon P, Aurelio MA (1991) Philippine Fault: a key to Philippine kinematics. Geology 19:32–35

    Article  Google Scholar 

  • Beck ME Jr (1983) On the mechanism of tectonic transport in zones of oblique subduction. Tectonophysics 93:1–11

    Article  Google Scholar 

  • Beck ME Jr (1991) Coastwise transport reconsidered: lateral displacements in oblique subduction zones, and tectonic consequences. Phys Earth Planetary Interiors 68:1–8

    Article  Google Scholar 

  • Beck ME Jr (1998) On the mechanism of crustal block rotations in the central Andes. Tectonophysics 299: 75–92

    Article  Google Scholar 

  • Beck ME Jr (1999) On the mechanism of crustal block rotations in the central Andes — Reply. Tectonophysics 213:467–469

    Article  Google Scholar 

  • Beck ME Jr, Rojas C, Cembrano J (1993) On the nature of buttressing in margin-parallel strike-slip fault systems. Geology 21: 755–758

    Article  Google Scholar 

  • Bellier O, Sébrier M (1995) Is the slip rate variation on the Great Sumatran fault accommodated by forearc stretching? Geophys Res Lett 22:1969–1972

    Article  Google Scholar 

  • Belmonte A (2002) Crustal seismicity, structure and rheology of the upper plate between the Precordillere and the volcanic arc in northern Chile (22°S–24°S). PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/2002/202/

    Google Scholar 

  • Bevis M, Martel SJ (2001) Oblique plate convergence and interseismic strain accumulation. Geochem Geophys Geosyst 2: doi 2000GC000125

    Google Scholar 

  • Bevis M, Smalley R Jr, Herring T, Godoy J, Galban F (1999) Crustal motion north and south of the Arica deflection: Comparing recent geodetic results from the Central Andes. Geochem Geophys Geosyst 1: doi 1999GC000011

    Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3): doi 10.1029/2001GC000252

    Google Scholar 

  • Bohm M, Lüth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, igger P (2002) The Southern Andes between 36° and 40°S latitude: eismicity and average seismic velocities. Tectonophysics 356:275–289

    Article  Google Scholar 

  • Brasse H, Soyer W (2001) A magnetotelluric study in the Southern Chilean Andes. Geophys Res Lett 28(19):3757–3760

    Article  Google Scholar 

  • Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107(B5): doi 10.1029/2001JB000391

    Google Scholar 

  • Brooks BA, Bevis M, Smalley R Jr, Kendrick E, Manceda R, Lauría E, Maturana R, Araujo M (2003) Crustal motion in the Southern Andes (26°–36°S): do the Andes behave like a microplate? Geochem Geophys Geosyst 4(10): doi 10.1029/2003GC0005054

    Google Scholar 

  • Brown M, Diáz F, Grocott J (1993) Displacement history of the Atacama fault system 25°00′S–27°00′S, northern Chile. Geol Soc America Bull 105:1165–1174

    Article  Google Scholar 

  • Burbridge DR, Braun J (1998) Analogue models of obliquely convergent continental plate boundaries. J Geophys Res 103(B7): 15221–15237

    Article  Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Applied Geophys 116:615–626

    Article  Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquine Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. In: Geodynamics of the Andes, Vol. 259(1–3):55–66, Elsevier, Amsterdam

    Google Scholar 

  • Cembrano J, Schermer E, Lavenu A, Sanhueza A (2000) Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe-Ofqui fault zone, southern Chilean Andes. Tectonophysics 319: 129–149

    Article  Google Scholar 

  • Cembrano J, Lavenu A, Reynolds P, Arancibia G, López G, Sanhueza A (2002) Late Cenozoic transpressional ductile deformation north of the Nazca-South America-Antarctica triple junction. Tectonophysics 354:289–314

    Article  Google Scholar 

  • Cembrano J, González G, Arancibia G, Ahumada I, Olivares V, Herrera V (2005) Fault zone development and strain partitioning in an extensional strike-slip duplex: a case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophyscis 400:105–125

    Article  Google Scholar 

  • Chemenda A, Lallemand S, Bokun A (2000) Strain partitioning and interplate friction in oblique subduction zones: constraints provided by experimental modeling. J Geophys Res 105(B3):5567–5581

    Article  Google Scholar 

  • Chinn DS, Isacks BL (1983) Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc. Tectonics 2(6):529–563

    Google Scholar 

  • Chlieh M, De Chalabier JB, Ruegg JC, Armijo R, Dmowska R, Campos J, Feigl KL (2004) Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. Geophys J Int 158:695–711

    Article  Google Scholar 

  • Comte D, Pardo M, Dorbath L, Dorbath C, Haessler H, Rivera L, Cisternas A, Ponce L (1994) Determination of seismogenic interpolate contact zone and crustal seismicity around Antofagasta, northern Chile using local data. Geophys J Int 116:553–561

    Google Scholar 

  • Comte D, Dorbath L, Pardo M, Monfret T, Haessler H, Rivers L, Frogneux M, Glass B, Meneses C (1999) A double-layered seismic zone in Arica, northern Chile. Geophys Res Let 26(13):1965–1968

    Article  Google Scholar 

  • Comte D, Dorbath C, Dorbath L, Farías M, David C, Haessler H, Glass B, Correa E, Balmaceda I, Cruz A, Ruz L (2003) Distribución temporal y en profundidad de las réplicas del sismo superficial de Aroma, norte de Chile del 24 de Julio de (2001) X Congreso Geológico Chileno 2003, Universidad de Concepción, Chile

    Google Scholar 

  • Dahlen FA (1990) Critical taper model of fold-and-thrust belts and accretionary wedges. Annu Rev Earth Planet Sci 18:55–99

    Article  Google Scholar 

  • De Ignacio C, López I, Oyarzun R, Márquez A (2001) The northern Patagonian Somuncura plateau basalts: a product of salb-induced, shallow asthenospheric upwelling? Terra Nova 13(2):117–121

    Article  Google Scholar 

  • Delouis B, Cisternas A, Dorbath L, Rivera L, Kausel E (1996) The Andean subduction zone between 22 and 25°S (northern Chile): Precise geometry and state of stress. Tectonophysics 259:81–100

    Article  Google Scholar 

  • Delouis B, Philip H, Dorbath L, Cisternas A (1998) Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophys J Int 132:302–338

    Article  Google Scholar 

  • Dewey JF, Lamb S H (1992) Active tectonics of the Andes. Tectonophysics 205:79–95

    Article  Google Scholar 

  • Díaz Naveas JL (1999) Sediment subduction and accretion at the Chilean Convergent Margin between 35°S and 40°S. PhD thesis, University of Kiel

    Google Scholar 

  • Dilles J, Tomlinson AJ, Martin M, Blanco N (1997) The El Abra and Fortuna complexes: a porphyry copper batholith sinistrally displaced by the Falla Oeste. In: VIII Congresso Geológico Chileno, ACTAS Vol III — Nuevos Antecedentes de la Geologí a del Distrio de Chuquicamata, Periodo 1994–1995, Sessión 1: Geología Regional: pp 1878–1882, Universidad Catolica del Norte, Chile

    Google Scholar 

  • Echtler H, Glodny J, Gräfe K, Rosenau M, Melnick D, Seifert W, Vietor T (2003): Active Tectonics controlled by inherited structures in the long-term stationary and non-plateau South-Central Andes. EGSAGU-EUG Joint Assembly, Nice, France, Abstract EAE03-A-10902

    Google Scholar 

  • England P, Engdahl R, Thatcher W (2004) Systematic variation in the depth of slabs beneath arc volcanoes. Geophys J Int 156:377–408

    Article  Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. J Geophys Res 77:4432–4460

    Google Scholar 

  • Forsythe RD, Nelson E (1985) Geological manifestation of ridge collision: evidence for the Golfo de Penas, Taito basin, southern Chile. Tectonics 4:477–495

    Google Scholar 

  • González G, Cembrano J, Carrizo D, Macci A, Schneider H (2003) Link between forearc tectonics and Pliocene-Quaternary deformation of the Coastal Cordillera, Northern Chile. J S Am Earth Sci 16:321–342

    Article  Google Scholar 

  • Gorring ML, Kay SM, Zeitler PK, Ramos VA, Rubiolo D, Fernandez MI, Panza JL (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile triple junction. Tectonics 16(1):1–17

    Article  Google Scholar 

  • Götze H-J, Lahmeyer B, Schmidt S, Strunk S (1994) The lithospheric structure of the Central Andes (20°–26°S) as inferred from quantitative interpretation of regional gravity. In: Reutter KJ, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer, Heidelberg, pp 7–21

    Google Scholar 

  • Gutscher MA (2001) An Andean model of interplate coupling and strain partitioning applied to the flat subduction zone of WS Japan (Nankai Trough). Tectonophysics 333:95–109

    Article  Google Scholar 

  • Gutscher MA, Kukowski N, Malavielle J, Lallemand S (1998) Episodic imbricate thrusting and underthrusting: Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge. J Geophys Res 103:10161–10176

    Article  Google Scholar 

  • Gutscher MA, Spakman W, Bijwaard H, Engdahl ER (2000) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19(5):814–833

    Article  Google Scholar 

  • Hackney RI, Echtler HP, Franz G, Götze H-J, Lucassen F, Marchenko D, Melnick D, Meyer U, Schmidt S, Tašárová Z, Tassara A, Wienecke S (2006) The segmented overriding plate and coupling at the south-central Chilean margin (36–42°S). In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 355–374, this volume

    Google Scholar 

  • Hampel A, Kukowski N, Bialas J (2004) Ridge subduction at an erosive margin: the collision zone of the Nazca Ridge in southern Peru. J Geophys Res 109: doi 10.1029/2003JB002593

    Google Scholar 

  • Hartley AJ (2003) Andean uplift and climate change. J Geol Soc London 160:7–10

    Google Scholar 

  • Heinze B (2003) Active intraplate faulting in the forearc of North Central Chile (30°–31° S), Scientific Technical Report STR03/07. PhD thesis, GeoForschungsZentrum Potsdam, http://www.gfz-potsdam.de/bib/zbstr.htm

    Google Scholar 

  • Hervé M (1976) Estudio geológico de la falla Liquiñe-Reloncaví en la área de Liquiñe: antecedentes de un movimiento transcurrente (Provincia de Valdivia). Actas I Congreso Geológico Chileno B, pp 39–56

    Google Scholar 

  • Hervé F (1977) Petrology of the crystalline basement of the Nahuelbuta Mountains, southcentral Chile. In: Ishikawa T, Aguirre L (eds) Comparative Studies on the Geology of the Circum-Pacific Orogenic Belt in Japan and Chile, 1st Report. Japan Society Prom. Science Tokyo, pp 1–51

    Google Scholar 

  • Hoffmann-Rothe A, Ritter O, Janssen C (2004a) Correlation of electrical conductivity and structural damage at a major strikeslip fault in Northern Chile. J Geophys Res 109: doi 10.1029/2004JB003030

    Google Scholar 

  • Hoffmann-Rothe A, Kukowski N, Oncken O (2004b) Phase dependent strain partitioning in obliquely convergent settings. Bollettino di Geofisica 45:93–97

    Google Scholar 

  • Hu Y, Wang K, He J, Klotz J, Khazaradze G (2004) Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake. J Geophys Res 109: doi 10.1029/2004JB003163

    Google Scholar 

  • Janssen C, Hoffmann-Rothe A, Tauber S, Wilke H (2002) Internal structure of the Precordilleran fault system (Chile) — insights from structural and geophysical observations. J Struc Geol 24:123–143

    Article  Google Scholar 

  • Jarrard RD (1986a) Relations among subduction parameters. Reviews of Geophysics 24(2):217–284

    Google Scholar 

  • Jarrard RD (1986b) Terrane motion by strike-slip faulting of forearc slivers. Geology 14:780–783

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22° to 33° S Latitude). In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Soc Economic Geol Spec Publ 7:27–59

    Google Scholar 

  • Kendrick E, Bevis M, Smalley R Jr, Brooks BA (2001) An integrated crustal velocity field for the central Andes. Geochem Geophys Geosyst 2: doi 10.1029/2001GC000191

    Google Scholar 

  • Khazaradze G, Klotz J (2003) Short-and long-term effects of GPS measured crustal deformation rates along the south central Andes. J Geophys Res 108: doi 10.1029/2002JB001879

    Google Scholar 

  • Kley J (1999) Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J South American Earth Sci 12:221–235

    Article  Google Scholar 

  • Klotz J, Angermann D, Michel G W, Porth R, Reigber C, Reinking J, Viramonte J, Perdomo R, Rios VH, Barrientos S, Barriga R, Cifuentes O (1999) GPS-derived deformation of the Central Andes including the 1995 Antofagasta Mw = 8.0 earthquake. Pure Appl Geophys 154:3709–3730

    Article  Google Scholar 

  • Klotz J, Khazaradze G, Angermann D, Reigber C, Perdomo R, Cifuentes O (2001) Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth Planetary Science Letters 193:437–446

    Article  Google Scholar 

  • Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the Central and Southern Andes and constraints on the viscosity of the Earth’s upper mantle. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 65–90, this volume

    Google Scholar 

  • Krawcyzk C, SPOC Team (2003) Amphibious seismic survey images plate interface at 1960 Chile earthquake. EOS 84(32):301, 304–305

    Google Scholar 

  • Kukowski N, Oncken O (2006) Subduction erosion — the “normal” mode of fore-arc material transfer along the Chilean margin? In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 217–236, this volume

    Google Scholar 

  • Kukowski N, Schillhorn T, Flueh ER, Huhn K (2000) A newly identified strike slip plate boundary in the north-east Arabian Sea. Geology 28:355–358

    Article  Google Scholar 

  • Kukowski N, Hampel A, Krabbenhöft A, Bialas J (2004) Varying rates and modes of subduction erosion along the Peruvian margin. AGU Fall Meeting, San Francisco

    Google Scholar 

  • Kus J, Block M, Reichert C, Diaz Naveas J, Ladage S, Urbina O, SO161-cruise participants (2006) NW-SE structural segmentation of the south-central Chilean offshore forearc area between 35°S and 40°S. Marine Geology (submitted)

    Google Scholar 

  • Lallemand SE, Schnürle P, Malavielle J (1994) Coulomb theory applied to accretionary and nonaccretionary wedges: possible causes for tectonic erosion and/or frontal accretion. J Geophys Res 99(B6): 12033–12055

    Article  Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional and tranpressional stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra arc zones (Andes of Central and Southern Chile). J Struc Geol 21:1669–1691

    Article  Google Scholar 

  • Lezaeta P (2001): Distortion analysis and 3D modeling of magnetotelluric data in the Southern Central Andes. PhD thesis, Free University Berlin, http://www.diss.fu-berlin.de/2001/108/

    Google Scholar 

  • Lindquist KG, Engle K, Stahlke D, Price E (2004) Global topography and bathymetry grid improves research efforts. EOS 85(19):186

    Google Scholar 

  • Lohrmann J, Kukowski N, Adam J, Oncken O (2003) The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. J Struc Geol 25:1691–1711

    Article  Google Scholar 

  • López Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes Quaternary volcanism (37°–46°S). Rev Geológica Chile 22(2):219–234

    Google Scholar 

  • Martinez A, Malavielle J, Lallemand S, Collot JY (2002) Strain partitioning in an accretionary wedge, in oblique convergence: analogue modelling. Bull Soc Géol France 173(1):17–24

    Article  Google Scholar 

  • McCaffrey R (1992) Oblique plate convergence, slip vectors, and forearc deformation. J Geophys Res 97(B6):8905–8915

    Google Scholar 

  • McCaffrey R (1994) Global variability in subduction thrust zoneforearc systems. PAGEOPH 142(1):173–224

    Article  Google Scholar 

  • McCaffrey R (1996) Estimates of modern arc-parallel strain rates in fore arcs. Geology 24(1):27–30

    Article  Google Scholar 

  • McCaffrey R (2002) Crustal block rotations and plate coupling. In: Stein S, Freymueller JT (eds) Plate boundary zones. Geodynamics Series 30:101–122

    Google Scholar 

  • McCaffrey R, Zwick PC, Bock Y, Prawirodirdjo L, Genrich J, Stevens C W, Puntodewo SSO, Subarya C (2000) Strain partitioning during oblique convergence in northern Sumatra: geodetic and seismologic constraints and numerical modeling. J Geophys Res 105(B12):28363–28376

    Article  Google Scholar 

  • McClay KR, Whitehouse PS, Dooley T, Richards M (2004) 3D evolution of fold and thrust belts formed by oblique convergence. Mar Petr Geol 21:857–877

    Article  Google Scholar 

  • McQuarry N (2002) Initial plate geometry, shortening variations, and evolution of the Bolivian orocline. Geology 30(10):867–870

    Article  Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler H (2006) Late Cenozoic tectonic evolution, western flank of the Neuquén Andes between 37 and 39° south latitude. In: Kay SM, Ramos VA (eds) Late Cretaceous to recent magmatism and tectonism of the Southern Andean Margin at the latitude of the Neuquén Basin (36–39° S). Geol Soc Am Spec P

    Google Scholar 

  • Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res 102(B2): 3211–3214

    Article  Google Scholar 

  • Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in southcentral Chile to the late Oligocene increase in plate convergence rate. Rev Geológica Chile 27:177–203

    Google Scholar 

  • Nelson E, Forsythe R, Arit I (1994) Ridge collision tectonics in terrane development. J South American Earth Sci 7(372–4):271–278

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25

    Google Scholar 

  • Oleskevich DA, Hyndman RD, Wang K (1999) The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J Geophys Res 104(B7):14965–14991

    Article  Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system — facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 3–28, this volume

    Google Scholar 

  • Ossandón G, Fréraut R, Gustafson LB, Lindsay DD, Zentilli M (2001) Geology of the Chuquicamata mine: a progress report. Econ Geology 96:249–270

    Article  Google Scholar 

  • Pacheco JF, Sykes LR, Scholz CH (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98(B8):14133–14159

    Google Scholar 

  • Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6:233–248

    Google Scholar 

  • Pardo M, Comte D, Monfret T (2002) Seismotectonics and stress distribution in the central Chile subduction zone. J South American Earth Sci 15:11–22

    Article  Google Scholar 

  • Patzwahl R, Mechie J, Schulze A, Giese P (1999) Two-dimensional velocity models of the Nazca plate subduction zone between 19.5°S and 25°S from wide-angle seismic measurements during CINCA95 project. J Geophys Res 104(B4):7293–7317

    Article  Google Scholar 

  • Pelz K (2000) Tectonic erosion along the central Andean forearc (20–24°S). PhD thesis, GeoForschungsZentrum Potsdam, Scientific Technical Report STR00/20

    Google Scholar 

  • Platt JP (1993) Mechanics of oblique convergence. J Geophys Res 98(B9):16239–16256

    Google Scholar 

  • Rabassa J, Clapperton CM (1990) Quaternary glaciations of the Southern Andes. Quaternary Sci Rev 9:153–174

    Article  Google Scholar 

  • Reinecker J, Heidbach O, Tingay M, Connolly P, Müller B (2004) The 2004 release of the World Stress Map. http://www.world-stressmap.org

    Google Scholar 

  • Reuther CD, Potent S, Bonilla R (2003) Crustal stress history and geodynamic processes of a segmented active plate margin: South-Central Chile: the Arauco Bío-Bío trench arc system. X Congreso Geológico Chileno 2003, Universidad de Concepción, Chile

    Google Scholar 

  • Reutter KJ, Scheuber E, Helmcke D (1991) Structural evidence of orogen-parallel strike slip displacements in the Precordillera of northern Chile. Geologische Rundschau (Int J Earth Sci) 80:135–153

    Article  Google Scholar 

  • Reutter K-J, Scheuber E, Chong G (1996) The Precordilleran fault system of Chuquicamata, Northern Chile: evidence for reversals along arc-parallel strike-slip faults. Tectonophysics 259:213–228

    Article  Google Scholar 

  • Reutter K-J, Charrier R, Götze H-J, Schurr B, Wigger P, Scheuber E, Giese P, Reuther C-D, Schmidt S, Rietbrock A, Chong G, Belmonte-Pool A (2006) The Salar de Atacama Basin: a subsiding block within the western edge of the Altiplano-Puna Plateau. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 303–326, this volume

    Google Scholar 

  • Riquelme R, Martinod J, Hérail G, Darrozes J, Charrier R (2003) A geomorphological approach to determining the Neogene to recent tectonic deformation in the coastal Cordillera of northern Chile (Atacama). Tectonophysics 361:255–275

    Article  Google Scholar 

  • Rosenau M (2004) Tectonis of the Southern Andean intra-arc zone (38°–42°S), PhD thesis, Freie Universität Berlin

    Google Scholar 

  • Ruegg JC, Campos J, Armijo R, Barrientos S, Briole P, Thiele R, Arancibia M, Cañuta J, Duquesnoy T, Chang M, Lazo D, Lyon-Caen H, Ortlieb L, Rossignol JC, Serrurier L (1996) The Mw=8.1 Antofagasta (North Chile) Earthquake of July 30 (1995) first results from teleseimic and geodetic data. Geophys Res Lett 23(9):917–920

    Article  Google Scholar 

  • Ruegg JC, Campos J, Madariaga R, Kausel E, De Chabalier J B, Armijo R, Dimitrov D, Georgiev I, Barrientos S (2002) Interseismic strain accumulation in south central Chile from GPS measurements, 1996–1999. Geophys Res Lett 29(11): doi 1517, 10.1029/2001GL013438

    Google Scholar 

  • Ruff L, Kanamori H (1983) Seismic coupling and uncoupling at subduction zones. Tectonophysics 99:99–117

    Article  Google Scholar 

  • Saint Blanquat M, Tikoff B, Teyssier C, Vigneresse JL (1998) Transpressional kinematics and magmatic arcs. In: Holdsworth RE, Strachan R, Dewey JF (eds) Continental transpressional and transtensional tectonics. Geol Soc London Spec Publ 135:327–340

    Google Scholar 

  • Savage JC (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88(B6):4984–4996.

    Google Scholar 

  • Scheuber E, Andriessen PAM (1990) The kinematic and geodynamic significance of the Atacama Fault Zone, Northern Chile. J Structural Geology 12(2):243–257

    Article  Google Scholar 

  • Scheuber E, González G (1999) Tectonics of the Jurassic-early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): a story of coupling and decoupling in the subduction zone. Tectonics 18(5):895–910

    Article  Google Scholar 

  • Scheuber E, Bogdanic T, Jensen A, Reutter K-J (1994) Tectonic development of the North Chilean Ades in relation to plate convergence and magmatism since the Jurassic. In: Reutter K-J, Scheuber E, Wigger P (1994) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 121–139

    Google Scholar 

  • Scheuber E, Hammerschmidt K, Friedrichsen H (1995) 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama Fault Zone, Northern Chile: the age of deformation. Tectonophysics 250:61–87

    Article  Google Scholar 

  • Schilling FR, Trumbull RB, Brasse H, Haberland C, Asch G, Bruhn D, Mai K, Haak V, Giese P, Muñoz M, Ramelow J, Rietbrock A, Ricaldi E, Vietor T (2006) Partial melting in the Central Andean crust: a review of geophysical, petrophysical, and petrologic evidence. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 459–474, this volume

    Google Scholar 

  • Seifert W, Rosenau M, Echtler H (2005) The evolution of the South Central Chile magmatic arcs: Crystallization depths of granitoids estimated by hornblende geothermobarometry — implications for mass transfer processes along the active continental margin. N Jb Geol Paläont 236:115–127

    Google Scholar 

  • Shreve RL, Cloos M (1986) Dynamics of sediment subduction, melange formation, and prism accretion. J Geophys Res 91(B10):10229–10245

    Google Scholar 

  • Siame LL, Bourlès DL, Sébrier M, Bellier O, Castano JC, Araujo M, Perez M, Raisbeck GM, Yiou F (1997) Cosmogenic dating ranging from 20 to 700 ka od a series of alluvial fan surfaces affected by the El Tigre fault, Argentina. Geology 25(11):975–978

    Article  Google Scholar 

  • Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3, http://www.volcano.si.edu/world/

    Google Scholar 

  • Sick C, Yoon M-K, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the Chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 147–170, this volume

    Google Scholar 

  • Sillitoe RH, McKee EH (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Economic Geol 91:164–179

    Article  Google Scholar 

  • Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South America and African plate motion and plate deformation. Science 279:60–63

    Article  Google Scholar 

  • Singer BS, Leeman WP, Thirlwall MF, Rogers NW (1996) Does fracture zone subduction increase sediment flux and mantle melting in subduction zones? Trace element evidence from Aleutian arc basalts. In: Bebot GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. AGU, Geophysical Monograph 96:285–291

    Google Scholar 

  • Sobesiak M (2004) Fault plane structure of the 1995 Antofagasta earthquake (Chile) derived from local seismological parameters. PhD thesis, University of Potsdam

    Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J South American Earth Sci 11(3):211–215

    Article  Google Scholar 

  • Somoza R, Singer S, Tomlinson A (1999) Paleaomagnetic study of upper Miocene rocks from northern Chile: implications for the origin of late Miocene-Recent tectonic rotations in the southern Central Andes. J Geophys Res 104(B10):22923–22936

    Article  Google Scholar 

  • Stauder W (1973) Mechanism and spatial distribution of Chilean earthquakes with relation to subduction of the oceanic plate. J Geophys Res 7(23):5033–5061

    Google Scholar 

  • Stein CA (2003) Heat flow and flexure at subduction zones. Geophys Res Lett 30(23): doi 10.1029/2003GL018478

    Google Scholar 

  • Stern C (1989) Pliocene to present migration of the volcanic front, Andean Southern Volcanic Front. Rev Geológica Chile 16(2):145–162

    Google Scholar 

  • Suarez G, Comte D (1993) Comment on’ seismic coupling along the chilean subduction zone’ by B. W. Tichelaar and L. R. Ruff. J Geophys Res 98(B9):15825–15828

    Google Scholar 

  • Tassara A, Schmidt S, Götze H-J (2006) Three-dimensional density model of the oceanic Nazca plate and the Andean continental margin. J Geophys Res

    Google Scholar 

  • Tašárová, Z (2004) Gravity data analysis and interdisciplinary 3D modelling of a convergent plate margin (Chile, 36–42 S). PhD thesis, Free University Berlin, http://www.diss.fu-berlin.de/2005/19

    Google Scholar 

  • Taylor GK, Grocott J, Pope A, Randall DE (1998) Mesozoic fault systems, deformation and fault block rotation in the Andean forearc: a crustal scale strike-slip duplex in the Coastal Cordillera of northern Chile. Tectonophysics 299:93–109

    Article  Google Scholar 

  • Tichelaar BW, Ruff LJ (1991) Seismic coupling along the Chilean subduction zone. J Geophys Res 96:11997–12022

    Google Scholar 

  • Tichelaar BW, Ruff LJ (1993) Depth of seismic coupling along subduction zones. J Geophys Res 98:2017–2037

    Article  Google Scholar 

  • Thomson S (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: an appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bulletin 114(9):1159–1173

    Google Scholar 

  • Tomlinson AJ, Blanco N (1997a) Structural evolution and displacement history of the West Fault system, Precordillera, Chile: part I, synmineral history. In: VIII Congresso Geológico Chileno, ACTAS Vol III — Nuevos Antecedentes de la Geologí a del Distrio de Chuquicamata, Periodo 1994–1995, Sessión 1: Geología Regional, Universidad Catolica del Norte, pp 1873–1877

    Google Scholar 

  • Tomlinson AJ, Blanco N (1997b) Structural evolution and displacement history of the West Fault system, Precordillera, Chile: part II, postmineral history. In: VIII Congresso Geológico Chileno, ACTAS Vol III — Nuevos Antecedentes de la Geologí a del Distrio de Chuquicamata, Periodo 1994–1995, Sessión 1: Geología Regional, Universidad Catolica del Norte, pp 1878–1882

    Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30° S and 40° S — plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 375–400, this volume

    Google Scholar 

  • Vietor T, Echtler H, Müller H, Oncken O, Ladage S (2004) Late Miocene block rotations in the South Chilean offshore forearc (38.5°S) linked to backarc shortening: paleomagnetic and bathymetric evidence. EOS 85(47) Fall Meeting Supplements (Abstract)

    Google Scholar 

  • von Huene R, Ranero C R (2003) Subduction erosion and basal friction along the sediment-starved convergent margin of Antofagasta, Chile. J Geophys Res 108: doi 10.1029/2001JB001569

    Google Scholar 

  • Wallace LM, Beavan J, McCaffrey R, Darby D (2004) Subduction zone coupling and tectonic block rotations in the north Island, New Zealand. J Geophys Res 109: doi 10.1029/2004JB00324

    Google Scholar 

  • Wang K (1996) Simplified Analysis of horizontal stresses in a buttressed forearc sliver at an oblique subduction zone. Geophys Res Letters 23(16):2021–2024

    Article  Google Scholar 

  • Wang K (2000) Stress-strain ‘paradox’, plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones. Tectonophysics 319:321–338

    Article  Google Scholar 

  • Wang K, Dixon T (2004) ‘Coupling’ semantics and science in earthquake research. EOS 85(15):180

    Google Scholar 

  • Wang K, He J (1999) Mechanics of low-stress forearcs: Nankai and Cascadia. J Geophys Res 104(B7):15191–15205

    Article  Google Scholar 

  • Wang K, Suyehiro K (1999) How does plate coupling affect crustal stresses in Northeast and Southwest Japan? Geophys Res Lett 26(15):2307–2310

    Article  Google Scholar 

  • Wang K, Mulder T, Rogers GC, Hyndman RD (1995) Case for low coupling stress on the Cascadia subduction fault. J Geophys Res 100(B7):12907–12918

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. EOS 79(47):579

    Article  Google Scholar 

  • Yáñez G, Cembrano J (2004) Role of viscous plate coupling in the late Tertiary Andean tectonics. J Geophys Res 109: doi 10.1029/2003JB002494

    Google Scholar 

  • Yoon M, Buske S, Lüth S, Schulze A, Shapiro SA, Stiller M, Wigger P (2003) Along-strike variations of crustal reflectivity related to the Andean subduction process. Geophys Res Lett 30(4): doi 10.1029/2002GL015848

    Google Scholar 

  • Yu G, Wesnousky SG, Ekström G (1993) Slip Partitioning along major convergent plate boundaries. Pure Appl Geophys 140(2):183–210

    Article  Google Scholar 

  • Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the Southern Andes. In: Kay SM, Ramos VA (eds) Late Cretaceous to recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquén Basin (36–39°S). Geol Soc Am Spec P

    Google Scholar 

  • Zonenshayn LP, Savostin L, Sedov A (1984) Global paleogeodynamic reconstruction for the last 160 million years. Geotectonics 18:181–195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann-Rothe, A. et al. (2006). Oblique Convergence along the Chilean Margin: Partitioning, Margin-Parallel Faulting and Force Interaction at the Plate Interface. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_6

Download citation

Publish with us

Policies and ethics