Skip to main content

Characteristics of Lost and Served Packets for Retrial Queueing System with General Renovation and Recurrent Input Flow

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks (DCCN 2018)

Abstract

The retrial queuing system with general renovation is under investigation. The mechanism of general renovation with retrials means that the packet at the end of its service in accordance with a given probability distribution discards a certain number of other packets from the buffer and itself stays in the system for another round of service, or simply leaves the system without any effect on it. In order to obtain some probability and time related performance characteristics the embedded Markov chain technique is applied. Under the assumption of the existence of a stationary regime, the steady-state probability distribution (for the embedded Markov chain) of the number of packets in the system is obtained, as well as some other characteristics, such as the probability of the accepted task to be served or the probability of the accepted task to be dropped from the buffer, the probability distribution of number of repeated services. Also time characteristics are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 4(1), 397–413 (1993)

    Article  Google Scholar 

  2. Ramakrishnan, K., Floyd, S., Black, D.: The Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168. Internet Engineering Task Force (2001). https://tools.ietf.org/html/rfc3168

  3. Korolkova, A.V., Zaryadov, I.S.: The mathematical model of the traffic transfer process with a rate adjustable by RED. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, pp. 1046–1050. IEEE (2010)

    Google Scholar 

  4. Sharma, V., Purkayastha, P.: Performance analysis of TCP connections with RED control and exogenous traffic. Queueing Syst. 48(3), 193–235 (2004)

    Article  MathSciNet  Google Scholar 

  5. Velieva, T.R., Korolkova, A.V., Kulyabov, D.S.: Designing installations for verification of the model of active queue management discipline RED in the GNS3. In: 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 570–577. IEEE Computer Society (2015)

    Google Scholar 

  6. Korolkova, A.V., Kulyabov, D.S., Sevastianov, L.A.: Combinatorial and operator approaches to RED modeling. Math. Model. Geom. 3, 1–18 (2015)

    Article  Google Scholar 

  7. Zaryadov, I., Korolkova, A., Kulyabov, D., Milovanova, T., Tsurlukov, V.: The survey on Markov-modulated arrival processes and their application to the analysis of active queue management algorithms. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 417–430. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66836-9_35

    Chapter  Google Scholar 

  8. Konovalov, M., Razumchik, R.: Queueing Systems with Renovation vs. Queues with RED. Supplementary Material (2017). https://arxiv.org/abs/1709.01477

  9. Gelenbe, E.: Product-form queueing networks with negative and positive customers. J. Appl. Probab. 28(3), 656–663 (1991)

    Article  MathSciNet  Google Scholar 

  10. Pechinkin, A., Razumchik, R.: Waiting characteristics of queueing system \(Geo/Geo/1/\infty \) with negative claims and a bunker for superseded claims in discrete time. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2010, pp. 1051–1055 (2010). https://doi.org/10.1109/ICUMT.2010.5676508

  11. Pechinkin, A.V., Razumchik, R.V.: A method for calculating stationary queue distribution in a queuing system with flows of ordinary and negative claims and a bunker for superseded claims. J. Commun. Technol. Electr. 57(8), 882–891 (2012)

    Article  Google Scholar 

  12. Pechinkin, A.V., Razumchik, R.V.: The stationary distribution of the waiting time in a queueing system with negative customers and a bunker for superseded customers in the case of the LAST-LIFO-LIFO discipline. J. Commun. Technol. Electr. 57(12), 1331–1339 (2012)

    Article  Google Scholar 

  13. Razumchik, R.V.: Analysis of finite capacity queue with negative customers and bunker for ousted customers using chebyshev and gegenbauer polynomials. Asia-Pacific J. Oper. Res. 31(04), 1450029 (2014). https://doi.org/10.1142/S0217595914500298

  14. Semenova, O.V.: Multithreshold control of the \(BMAP/G/1\) queuing system with MAP flow of Markovian disasters. Autom. Remote Control 68(1), 95–108 (2007)

    Article  MathSciNet  Google Scholar 

  15. Li, J., Zhang, L.: \(M^X|M|c\) queue with catastrophes and state-dependent control at idle time. Front. Math. China 12(6), 1427–1439 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gudkova, I., et al.: Modeling and analyzing licensed shared access operation for 5G network as an inhomogeneous queue with catastrophes. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, December 2016, 7765372, pp. 282–287 (2016)

    Google Scholar 

  17. Sudhesh, R., Savitha, P., Dharmaraja, S.: Transient analysis of a two heterogeneous servers queue with system disaster, server repair and customers impatience. TOP 25(1), 179–205 (2017)

    Article  MathSciNet  Google Scholar 

  18. Li, J., Zhang, L.: \(M^X /M/c\) queue with catastrophes and state-dependent control at idle time. Front. Math. China 12(6), 1427–1439 (2017)

    Article  MathSciNet  Google Scholar 

  19. Suranga Sampath, M.I.G., Liu, J.: Transient analysis of an \(M/M/1\) queue with reneging, catastrophes, server failures and repairs. Bull. Iran. Math. Soc. (2018). https://doi.org/10.1007/s41980-018-0037-6

  20. Azadeh, A., Naghavi Lhoseiny, M.S., Salehi, V.: Optimum alternatives of tandem \(G/G/K\) queues with disaster customers and retrial phenomenon: interactive voice response systems. Telecommun. Syst. 68(3), 535–562 (2018)

    Google Scholar 

  21. Dudin, A., Klimenok, V., Vishnevsky, V.: Analysis of unreliable single server queueing system with hot back-up server. Commun. Comput. Inf. Sci. 499, 149–161 (2015)

    Google Scholar 

  22. Krishnamoorthy, A., Pramod, P.K., Chakravarthy, S.R.: Queues with interruptions: a survey. TOP 22(1), 290–320 (2014)

    Article  MathSciNet  Google Scholar 

  23. Vishnevsky, V.M., Kozyrev, D.V., Semenova, O.V.: Redundant queuing system with unreliable servers. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, pp. 283–286. IEEE Xplore (2014)

    Google Scholar 

  24. Xu, B., Xu, X.: Equilibrium strategic behavior of customers in the \(M/M/1\) queue with partial failures and repairs. Oper. Res. 18(2), 273–292 (2018)

    Google Scholar 

  25. Nazarov, A., Sztrik, J., Kvach, A., Berczes, T.: Asymptotic analysis of finite-source \(M/M/\) retrial queueing system with collisions and server subject to breakdowns and repairs. Ann. Oper. Res. 1–17 (2018). https://doi.org/10.1007/s10479-018-2894-z

  26. Ometov, A., Kozyrev, D., Rykov, V., Andreev, S., Gaidamaka, Y., Koucheryavy, Y.: Reliability-centric analysis of offloaded computation in cooperative wearable applications. Wirel. Commun. Mob. Comput. 2017, 9625687 (2017)

    Google Scholar 

  27. Rykov, V., Kozyrev, D., Zaripova, E.: Modeling and simulation of reliability function of a homogeneous hot double redundant repairable system. In: Proceedings - 31st European Conference on Modelling and Simulation, ECMS 2017, pp. 701–705 (2017)

    Google Scholar 

  28. Houankpo, H.G.K., Kozyrev, D.V.: Sensitivity analysis of steady state reliability characteristics of a repairable cold standby data transmission system to the shapes of lifetime and repair time distributions of its elements. In: CEUR Workshop Proceedings, vol. 1995, pp. 107–113 (2017)

    Google Scholar 

  29. Rykov, V.V., Kozyrev, D.V.: Analysis of renewable reliability systems by Markovization method. In: Rykov, V.V., Singpurwalla, N.D., Zubkov, A.M. (eds.) ACMPT 2017. LNCS, vol. 10684, pp. 210–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71504-9_19

    Chapter  Google Scholar 

  30. Rykov, V., Kozyrev, D.: On sensitivity of steady-state probabilities of a cold redundant system to the shapes of life and repair time distributions of its elements. In: Pilz, J., Rasch, D., Melas, V., Moder, K. (eds.) IWS 2015. Springer Proceedings in Mathematics & Statistics, vol. 231, pp. 391–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76035-3_28

    Chapter  Google Scholar 

  31. Kreinin, A.: Queueing systems with renovation. J. Appl. Math. Stochast. Anal. 10(4), 431–443 (1997)

    Article  MathSciNet  Google Scholar 

  32. Kreinin, A.: Inhomogeneous random walks: applications in queueing and finance. In: CanQueue 2003. Fields Institute, Toronto (2003)

    Google Scholar 

  33. Bocharov, P.P., Zaryadov, I.S.: Probability distribution in queueing systems with renovation. Bull. Peoples’ Friendsh. Univ. Russia. Ser. Math. Inf. Sci. Phys. 1–2, 15–25 (2007)

    Google Scholar 

  34. Zaryadov, I.S., Pechinkin, A.V.: Stationary time characteristics of the \(GI/M/n/\infty \) system with some variants of the generalized renovation discipline. Autom. Remote Control 70(12), 2085–2097 (2009)

    Article  MathSciNet  Google Scholar 

  35. Zaryadov, I.S.: Queueing systems with general renovation. In: International Conference on Ultra Modern Telecommunications, ICUMT 2009, St.-Petersburg. IEEE (2009). https://doi.org/10.1109/ICUMT.2009.5345382

  36. Zaryadov, I., Razumchik, R., Milovanova, T.: Stationary waiting time distribution in \({G}|{M}|{n}|{r}\) with random renovation policy. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 349–360. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3_31

    Chapter  Google Scholar 

  37. Bogdanova, E.V., Milovanova, T.A., Zaryadov, I.S.: The analysis of queueing system with general service distribution and renovation. Bull. Peoples’ Friendsh. Univ. Russia. Ser. Math. Inf. Sci. Phys. 25(1), 3–8 (2017)

    Google Scholar 

  38. Zaryadov, I.S., Bogdanova, E.V., Milovanova, T.A.: Probability-time characteristics of \(M|G|1|1\) queueing system with renovation. In: CEUR Workshop Proceedings, vol. 1995, pp. 125–131 (2017)

    Google Scholar 

  39. Zaryadov, I.S., Scherbanskaya, A.A.: Time characteristics of queuing system with renovation and reservice. Bull. Peoples’ Friendsh. Univ. Russia. Ser. Math. Inf. Sci. Phys. 2, 61–66 (2014)

    Google Scholar 

  40. Matskevich, I.A.: Time-probabilistic characteristics of queueing system with general renovation and repeated service. In: Proceedings of the VI Conference on Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems, Moscow, Russia, pp. 37–39 (2016)

    Google Scholar 

  41. Zaryadov, I.S., Matskevich, I.A., Scherbanskaya, A.A.: The queueing system with general renovation and repeated service – time-probability characteristics. In: Proceedings of the Nineteenth International Scientific Conference on Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN 2016), vol. 3, pp. 458–462 (2016)

    Google Scholar 

  42. Abaev, P., Pechinkin, A., Razumchik, R.: On analytical model for optimal SIP server hop-by-hop overload control. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, 6459680, pp. 286–291 (2012)

    Google Scholar 

  43. Abaev, P., Gaidamaka, Y., Samouylov, K.E.: Modeling of hysteretic signaling load control in next generation networks. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2012. LNCS, vol. 7469, pp. 440–452. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32686-8_41

    Chapter  Google Scholar 

  44. Abaev, P., Pechinkin, A., Razumchik, R.: On mean return time in queueing system with constant service time and bi-level hysteric policy. In: Dudin, A., Klimenok, V., Tsarenkov, G., Dudin, S. (eds.) BWWQT 2013. CCIS, vol. 356, pp. 11–19. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35980-4_2

    Chapter  MATH  Google Scholar 

  45. Pechinkin, A.V., Razumchik, R.V.: Approach for analysis of finite \(M_2|M_2|1|R\) with hysteric policy for SIP server hop-by-hop overload control. In: Proceedings - 27th European Conference on Modelling and Simulation, ECMS 2013, pp. 573–579 (2013)

    Google Scholar 

  46. Abaev, P., Razumchik, R.V.: Queuing model for SIP server hysteretic overload control with bursty traffic. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2013. LNCS, vol. 8121, pp. 383–396. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40316-3_34

    Chapter  Google Scholar 

  47. Pechinkin, A.V., Razumchik, R.V.: Stationary characteristics of \(M_2|G|1|r\) system with hysteretic policy for arrival rate control. J. Commun. Technol. Electron. 58(12), 1282–1291 (2013)

    Article  Google Scholar 

  48. Gaidamaka, Y., Pechinkin, A., Razumchik, R., Samouylov, K., Sopin, E.: Analysis of an \(M|G|1|R\) queue with batch arrivals and two hysteretic overload control policies. Int. J. Appl. Math. Comput. Sci. 24(3), 519–534 (2014)

    Article  MathSciNet  Google Scholar 

  49. Samouylov, K.E., Abaev, P.O., Gaidamaka, Y.V., Pechinkin, A.V., Razumchik, R.V.: Analytical modelling and simulation for performance evaluation of SIP server with hysteretic overload control. In: Proceedings - 28th European Conference on Modelling and Simulation, ECMS 2014, pp. 603–609 (2014)

    Google Scholar 

  50. Gaidamaka, Y., Pechinkin, A., Razumchik, R.: Time-related stationary characteristics in queueing system with constant service time under hysteretic policy. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, January 2015, 7002158, pp. 534–540 (2015)

    Google Scholar 

  51. Abaev, P., Khachko, A., Beschastny, V.: Queuing model for SIP server hysteretic overload control with K-state MMPP bursty traffic. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops 2015-January, 7002151, pp. 495–500 (2015)

    Google Scholar 

  52. Hilt, V., Widjaja, I., Labs, B.: Controlling overload in networks of SIP servers. In: Proceedings - International Conference on Network Protocols, ICNP, art. no. 4697027, pp. 83–93 (2008)

    Google Scholar 

  53. Abdelal, A., Matragi, W.: Signal-based overload control for SIP servers. In: 7th IEEE Consumer Communications and Networking Conference, CCNC 2010, art. no. 5421642 (2010). https://doi.org/10.1109/CCNC.2010.5421642

Download references

Acknowledgments

The publication has been prepared with the support of the “RUDN University Program 5-100” and has been funded by Russian Foundation for Basic Research (RFBR) according to the research project No. 18-07-00692 and No. 16-07-00556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Zaryadov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bogdanova, E.V., Zaryadov, I.S., Milovanova, T.A., Korolkova, A.V., Kulyabov, D.S. (2018). Characteristics of Lost and Served Packets for Retrial Queueing System with General Renovation and Recurrent Input Flow. In: Vishnevskiy, V., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2018. Communications in Computer and Information Science, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-99447-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99447-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99446-8

  • Online ISBN: 978-3-319-99447-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics