Skip to main content

Physical Properties and Biocompatibility of Nanostructural Biomaterials Based on Active Calcium Silicate Systems and Hydroxyapatite

  • Chapter
  • First Online:
Dental Applications of Nanotechnology

Abstract

During the last two decades, a significant progress has been made in the area of development and application of new dental biomaterials with superior features comparing to the conventional ones. Among others, the nanotechnology-produced materials have an increasing role in dentistry: They improve the material properties of both resin-based composites and components for tissue engineering scaffolds. However, not only technology improvements, but also the risk safety assessments are of crucial interest for further developments in this field. Dental materials should be harmless to all oral tissues, and furthermore, they should not contain leachable and diffusible toxic substances, which could pass into circulatory system and contribute to the systemic toxicity responses. The possible endpoints include genotoxicity effects, which could lead to the carcinogenicity and teratogenicity, and inflammation processes, which could lead to the sensitization and allergic responses. To avoid the harmless effect of nanomaterials, it is necessary to test them for their biocompatibility properties. The in vitro testing of cytotoxicity and genotoxicity of materials, as well as the evaluation of in vivo histological responses to their application, is required for biocompatibility and bioactivity monitoring. Moreover, the evaluation of bioactivity and biofunctionality of the materials is also of vital importance. This chapter will deal with the synthesis and physical characteristics, as well as the biocompatibility , bioactivity , and biofunctionality of new materials based on active silicate systems and hydroxyapatite. These nanostructural materials are new endodontic cements based on dicalcium- and tricalcium-silicate and hydroxyapatite. To estimate their biological properties, the cytotoxicity and genotoxicity were monitored on human lymphocytes and lung fibroblasts. Furthermore, tissue compatibility after subcutaneous implantation of dental materials was monitored in Wistar albino rat model, while their bioactivity and biofunctionality were monitored in rabbits and Vietnamese pigs. Because of shorter setting time, the absence of heavy metals in the composition, as well as less inflammatory reaction when compared to standard materials, the endodontic cement based on dicalcium- and tricalcium-silicate and hydroxyapatite could be recommended for further clinical trials.

Opačić-Galić Vanja and Petrović Violeta: equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch K, Brave D (2009) Bioceramic technology-the game changer in endodontics. Endod Practice 2:17–21

    Google Scholar 

  2. Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33(4):377–390

    Article  Google Scholar 

  3. Güven EP, Taşlı PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F (2013) In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 46(12):1173–1182

    Article  Google Scholar 

  4. Baek SH, Plenk H, Kim S (2005) Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. J Endod. 31(6):444–449

    Article  Google Scholar 

  5. Da Silva GF, Guerreiro-Tanomaru JM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS (2011) Histological and histomorphometrical evaluation of furcation perforations filled with MTA, CPM and ZOE. Int Endod J 44(2):100–110

    Article  Google Scholar 

  6. Danesh F, Vahid A, Jahanbani J, Mashhadiabbas F, Arman E (2012) Effect of white mineral trioxide aggregate compared with biomimetic carbonated apatite on dentine bridge formation and inflammatory response in a dental pulp model. Int Endod J 45(1):26–34

    Article  CAS  Google Scholar 

  7. Parirokh M, Torabinejad M (2010) Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod 36(1):16–27

    Article  Google Scholar 

  8. Torabinejad M, Parirokh M (2010) Mineral trioxide aggregate: a comprehensive literature review—part II: leakage and biocompatibility investigations. J Endod 36(2):190–202

    Article  Google Scholar 

  9. Okiji T, Yoshiba K (2009) Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view. Int J of Dentistry

    Google Scholar 

  10. Asgary S, Shahabi S, Jafarzadeh T, Amini S, Kheirieh S (2008) The properties of a new endodontic material. J Endod 34(8):990–993

    Article  Google Scholar 

  11. Formosa LM, Mallia B, Camilleri J (2013) Mineral trioxide aggregate with anti-washout gel–properties and microstructure. Dent Mater 29(3):294–306

    Article  CAS  Google Scholar 

  12. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H (2013) Push-out bond strength of a nano-modified mineral trioxide aggregate. Dent Traumatol 29(4):323–327

    Article  CAS  Google Scholar 

  13. Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28(28):4023–4032

    Article  CAS  Google Scholar 

  14. Huan Z, Chang J (2009) Calcium–phosphate–silicate composite bone cement: self-setting properties and in vitro bioactivity. J Mater Sci Mater Med 20(4):833–841

    Article  CAS  Google Scholar 

  15. Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J Biomed Mater Res B Appl Biomater 83(1):121–126

    Article  Google Scholar 

  16. Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F (2009) Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. Journal of Endodontics. 35(2):243–250

    Article  Google Scholar 

  17. Opačić-Galić V, Petrović V, Živković S, Jokanović V, Nikolić B, Knežević-Vukčević J, Mitić-Ćulafić D (2013) New nanostructural biomaterials based on active silicate systems and hydroxyapatite: characterization and genotoxicity in human peripheral blood lymphocytes. Int Endod J 46(6):506–516

    Article  Google Scholar 

  18. Jokanović V, Čolović B, Jokanović B, Živković S (2015) Superplastic, Quick‐Bonding Endodontic Mixtures and Their Hydration. International Journal of Applied Ceramic Technology 12(S2)

    Article  Google Scholar 

  19. Fridland M, Rosado R (2003) Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. Journal of Endodontics. 29(12):814–817

    Article  Google Scholar 

  20. Bodanezi A, Carvalho N, Silva D, Bernardineli N, Bramante CM, Garcia RB, Moraes IG (2008) Immediate and delayed solubility of mineral trioxide aggregate and Portland cement. J Appl Oral Sci 16(2):127–131

    Article  CAS  Google Scholar 

  21. Gandolfi MG, Siboni F, Prati C (2012) Chemical–physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J 45(6):571–579

    Article  CAS  Google Scholar 

  22. Camilleri J (2011) Scanning electron microscopic evaluation of the material interface of adjacent layers of dental materials. Dent Mater 27(9):870–878

    Article  CAS  Google Scholar 

  23. Montellano AM, Schwartz SA, Beeson TJ (2006) Contamination of tooth-colored mineral trioxide aggregate used as a root-end filling material: a bacterial leakage study. J Endod 32(5):452–455

    Article  Google Scholar 

  24. Hawley M, Webb TD, Goodell GG (2010) Effect of varying water-to-powder ratios on the setting expansion of white and gray mineral trioxide aggregate. J Endod 36(8):1377–1379

    Article  Google Scholar 

  25. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I (2005) Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 31(2):97–100

    Article  CAS  Google Scholar 

  26. De-Deus G, Reis C, Brandão C, Fidel S, Fidel RA (2007) The ability of Portland cement, MTA, and MTA Bio to prevent through-and-through fluid movement in repaired furcal perforations. J Endod 33(11):1374–1377

    Article  Google Scholar 

  27. Sanghavi T, Shah N, Shah RR (2013) Comparative analysis of sealing ability of biodentin and calcium phosphate cement against mineral trioxide aggregate (MTA) as a furcal perforation repair material (an in vitro study). NJIRM 4:56–60

    Google Scholar 

  28. Tsatsas DV, Meliou HA, Kerezoudis NP (2005) Sealing effectiveness of materials used in furcation perforation in vitro. Int Dent J 55(3):133–141

    Article  Google Scholar 

  29. Tobón-Arroyave SI, Restrepo-Pérez MM, Arismendi-Echavarría JA, Velásquez-Restrepo Z, Marín-Botero ML, García-Dorado EC (2007) Ex vivo microscopic assessment of factors affecting the quality of apical seal created by root-end fillings. Int Endod J 40(8):590–602

    Article  Google Scholar 

  30. Guneser MB, Akbulut MB, Eldeniz AU (2013) Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. J Endod 39(3):380–384

    Article  Google Scholar 

  31. Iacono F, Gandolfi MG, Huffman B, Sword J, Agee K, Siboni F, Tay F, Prati C, Pashley D (2010) Push-out strength of modified Portland cements and resins. Am J Dent 23(1):43

    Google Scholar 

  32. Gancedo-Caravia L, Garcia-Barbero E (2006) Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. J Endod 32(9):894–896

    Article  Google Scholar 

  33. EL-Ma’aita AM, Qualtrough AJ, Watts DC (2013) The effect of smear layer on the push-out bond strength of root canal calcium silicate cements. Dental Materials 29(7): 797–803

    Article  Google Scholar 

  34. Atabek D, Sillelioğlu H, Ölmez A (2012) Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. J Endod 38(9):1288–1292

    Article  Google Scholar 

  35. Han L, Okiji T (2013) Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J 46(9):808–814

    Article  CAS  Google Scholar 

  36. Formosa LM, Mallia B, Camilleri J (2014) Push-out bond strength of MTA with antiwashout gel or resins. Int Endod J 47(5):454–462

    Article  CAS  Google Scholar 

  37. Martínez Lalis R, Esaín ML, Kokubu GA, Willis J, Chaves C, Grana DR (2009) Rat subcutaneous tissue response to modified Portland cement, a new mineral trioxide aggregate. Braz Dent J 20(2):112–117

    Article  Google Scholar 

  38. Yavari HR, Shahi S, Rahimi S, Shakouie S, Roshangar L, Abassi MM, Khavas SS (2009) Connective tissue reaction to white and gray MTA mixed with distilled water or chlorhexidine in rats. Iranian Endodontic Journal. 4(1):25

    Google Scholar 

  39. Theiszova M, Jantova S, Dragunova J, Grznarova P, Palou M (2005) Comparison the cytotoxicity of hydroxiapatite measured by direct cell counting and MTT test in murine fibroblast NIH-3T3 cells. Biomedical Papers-Palacky University in Olomouc 149(2):393

    Article  CAS  Google Scholar 

  40. Gandolfi MG, Taddei P, Tinti A, Prati C (2010) Apatite-forming ability (bioactivity) of ProRoot MTA. Int Endod J 43(10):917–929

    Article  CAS  Google Scholar 

  41. Chen L, Mccrate JM, Lee JC, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22(10):105708

    Article  Google Scholar 

  42. Zeferino EG, Bueno CE, Oyama LM, Ribeiro DA (2010) Ex vivo assessment of genotoxicity and cytotoxicity in murine fibroblasts exposed to white MTA or white Portland cement with 15% bismuth oxide. Int Endod J 43(10):843–848

    Article  CAS  Google Scholar 

  43. Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1)

    Article  CAS  Google Scholar 

  44. Brzovic V, Miletic I, Zeljezic D, Mladinic M, Kasuba V, Ramic S, Anic I (2009) In vitro genotoxicity of root canal sealers. Int Endod J 42(3):253–263

    Article  CAS  Google Scholar 

  45. Camargo SE, Camargo CH, Hiller KA, Rode SM, Schweikl H, Schmalz G (2009) Cytotoxicity and genotoxicity of pulp capping materials in two cell lines. Int Endod J 42(3):227–237

    Article  CAS  Google Scholar 

  46. Zhang W, Li Z, Peng B (2010) Ex vivo cytotoxicity of a new calcium silicate–based canal filling material. Int Endod J 43(9):769–774

    Article  CAS  Google Scholar 

  47. Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair 6(4):470–480

    Article  CAS  Google Scholar 

  48. Mitić-Ćulafić D, Žegura B, Nikolić B, Vuković-Gačić B, Knežević-Vukčević J, Filipič M (2009) Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food Chem Toxicol 47(1):260–266

    Article  Google Scholar 

  49. Shahoon H, Hamedi R, Yadegari Z, Majd Hosseiny VA, Golgounnia P (2013) The comparison of silver and hydroxyapatite nanoparticles biocompatibility on L929 fibroblast cells: an in vitro study. J Nanomed Nanotechnol 4:1–4

    Article  Google Scholar 

  50. De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM (2009) Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod 35(10):1387–1390

    Article  Google Scholar 

  51. Khalil WA, Eid NF (2013) Biocompatibility of BioAggregate and mineral trioxide aggregate on the liver and kidney. Int Endod J 46(8):730–737

    Article  CAS  Google Scholar 

  52. Ma J, Shen Y, Stojicic S, Haapasalo M (2011) Biocompatibility of two novel root repair materials. J Endod 37(6):793–798

    Article  Google Scholar 

  53. Petrović V, Opačić-Galić V, Živković S, Nikolić B, Danilović V, Miletić V, Jokanović V, Mitić-Ćulafić D (2015) Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study. Int Endod J 48(10):966–975

    Article  Google Scholar 

  54. Modareszadeh MR, Di Fiore PM, Tipton DA, Salamat N (2012) Cytotoxicity and alkaline phosphatase activity evaluation of endosequence root repair material. J Endod 38(8):1101–1105

    Article  Google Scholar 

  55. Lee BN, Son HJ, Noh HJ, Koh JT, Chang HS, Hwang IN, Hwang YC, Oh WM (2012) Cytotoxicity of newly developed ortho MTA root-end filling materials. J Endod 38(12):1627–1630

    Article  Google Scholar 

  56. Camilleri J (2008) Characterization of hydration products of mineral trioxide aggregate. Int Endod J 41(5):408–417

    Article  CAS  Google Scholar 

  57. Silva-Herzog D, Ramírez T, Mora J, Pozos AJ, Silva LA, Silva RA, Nelson-Filho P (2011) Preliminary study of the inflammatory response to subcutaneous implantation of three root canal sealers. Int Endod J 44(5):440–446

    Article  CAS  Google Scholar 

  58. Parirokh M, Mirsoltani B, Raoof M, Tabrizchi H, Haghdoost AA (2011) Comparative study of subcutaneous tissue responses to a novel root-end filling material and white and grey mineral trioxide aggregate. Int Endod J 44(4):283–289

    Article  CAS  Google Scholar 

  59. Gomes-Filho JE, Watanabe S, Lodi CS, Cintra LT, Nery MJ, Dezan E, Bernabé PF (2012) Rat tissue reaction to MTA FILLAPEX®. Dent Traumatol 28(6):452–456

    Article  Google Scholar 

  60. Zhang S, Yang X, Fan M (2013) BioAggregate and iRoot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. Int Endod J 46(10):923–929

    Article  CAS  Google Scholar 

  61. Maria de Lourdes RA, Holland R, Reis A, Bortoluzzi MC, Murata SS, Dezan E, Souza V, Alessandro LD (2008) Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod 34(1):1–6

    Google Scholar 

  62. Gandolfi MG, Ciapetti G, Perut F, Taddei P, Modena E, Rossi PL, Prati C (2009) Biomimetic calcium-silicate cements aged in simulated body solutions. Osteoblast response and analyses of apatite coating. J Appl Biomater Biomech 7(3)

    Google Scholar 

  63. Chen CL, Huang TH, Ding SJ, Shie MY, Kao CT (2009) Comparison of calcium and silicate cement and mineral trioxide aggregate biologic effects and bone markers expression in MG63 cells. J Endod 35(5):682–685

    Article  Google Scholar 

  64. Liu WN, Chang J, Zhu YQ, Zhang M (2011) Effect of tricalcium aluminate on the properties of tricalcium silicate–tricalcium aluminate mixtures: setting time, mechanical strength and biocompatibility. Int Endod J 44(1):41–50

    Article  Google Scholar 

  65. Shayegan A, Petein M, Vanden Abbeele A (2009) The use of beta-tricalcium phosphate, white MTA, white Portland cement and calcium hydroxide for direct pulp capping of primary pig teeth. Dent Traumatol 25(4):413–419

    Article  CAS  Google Scholar 

  66. Popović-Bajić M, Petrović V, Galić VO, Danilović V, Jokanović V, Prokić B, Prokić BB, Živković S (2016) Direct pulp capping with novel nanostructural materials based on calcium silicate systems and hydroxyapatite. Serbian Dent J 63(4):183–192

    Google Scholar 

  67. Tziafas D, Pantelidou O, Alvanou A, Belibasakis G, Papadimitriou S (2002) The dentinogenic effect of mineral trioxide aggregate (MTA) in short-term capping experiments. Int Endod J 35(3):245–254

    Article  CAS  Google Scholar 

  68. Orhan EO, Maden M, Senguüven B (2012) Odontoblast-like cell numbers and reparative dentine thickness after direct pulp capping with platelet-rich plasma and enamel matrix derivative: a histomorphometric evaluation. Int Endod J 45(4):317–325

    Article  CAS  Google Scholar 

  69. Tabarsi B, Parirokh M, Eghbal MJ, Haghdoost AA, Torabzadeh H, Asgary S (2010) A comparative study of dental pulp response to several pulpotomy agents. Int Endod J 43(7):565–571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, Project No. 172058 and Project No. 172007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitić-Ćulafić Dragana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vanja, OG. et al. (2018). Physical Properties and Biocompatibility of Nanostructural Biomaterials Based on Active Calcium Silicate Systems and Hydroxyapatite. In: Chaughule, R. (eds) Dental Applications of Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-97634-1_13

Download citation

Publish with us

Policies and ethics