Skip to main content

Image Analysis in Light Sheet Fluorescence Microscopy Images of Transgenic Zebrafish Vascular Development

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 894))

Included in the following conference series:

Abstract

The zebrafish has become an established model to study vascular development and disease in vivo. However, despite it now being possible to acquire high-resolution data with state-of-the-art fluorescence microscopy, such as lightsheet microscopy, most data interpretation in pre-clinical neurovascular research relies on visual subjective judgement, rather than objective quantification. Therefore, we describe the development of an image analysis workflow towards the quantification and description of zebrafish neurovascular development. In this paper we focus on data acquisition by lightsheet fluorescence microscopy, data properties, image pre-processing, and vasculature segmentation, and propose future work to derive quantifications of zebrafish neurovasculature development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gut, P., Reischauer, S., Stainier, D.Y.R., Arnaout, R.: Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol. Rev. 97(3), 889–938 (2017)

    Article  Google Scholar 

  2. Chico, T.J.A., Ingham, P.W., Crossman, D.C.: Modeling cardiovascular disease in the zebrafish. Trends Cardiovasc. Med. 18(4), 150–155 (2008)

    Article  Google Scholar 

  3. Poole, T.J., Coffin, J.D.: Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J. Exp. Zool. 251(2), 224–231 (1989)

    Article  Google Scholar 

  4. Demir, R., Yaba, A., Huppertz, B.: Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 112(3), 203–214 (2010)

    Article  Google Scholar 

  5. Adair, T.H., Montani, J.P.: Angiogenesis. Integrated Systems Physiology: From Molecule to Function to Disease. Morgan & Claypool Life Sciences, San Rafael (2010)

    Google Scholar 

  6. Carmeliet, P.: Angiogenesis in life, disease and medicine. Nature 438(7070), 932–936 (2005)

    Article  Google Scholar 

  7. Carla, C., Daris, F., Cecilia, B., Francesca, B., Francesca, C., Paolo, F.: Angiogenesis in head and neck cancer: a review of the literature. J. Oncol. 2012, 1–9 (2012). https://doi.org/10.1155/2012/358472

    Article  Google Scholar 

  8. Weinstein, B.M., Stemple, D.L., Driever, W., Fishman, M.C.: Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat. Med. 1(11), 1143–1147 (1995)

    Article  Google Scholar 

  9. Schmitt, C.E., Holland, M.B., Jin, S.W.: Visualizing vascular networks in zebrafish: an introduction to microangiography. Methods Mol. Biol. 843, 59–67 (2012)

    Article  Google Scholar 

  10. Lawson, N.D., Weinstein, B.M.: Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3(9), 674–682 (2002)

    Article  Google Scholar 

  11. Sydor, A.M., Czymmek, K.J., Puchner, E.M., Mennella, V.: Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol. 25(12), 730–748 (2015)

    Article  Google Scholar 

  12. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E.H.K.: Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007–1009 (2004)

    Article  Google Scholar 

  13. Santi, P.A.: Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem.: Off. J. Histochem. Soc. 59(2), 129–138 (2011)

    Article  Google Scholar 

  14. Weber, M., Mickoleit, M., Huisken, J.: Light sheet microscopy. Methods Cell Biol. 123, 193–215 (2014)

    Article  Google Scholar 

  15. Stelzer, E.H.K.: Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12(1), 23–26 (2015)

    Article  Google Scholar 

  16. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics, 2nd edn. Wiley, Hoboken (2007)

    Google Scholar 

  17. Stelzer, E.H.K.: Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J. Microsc. 189(1), 15–24 (1998)

    Article  Google Scholar 

  18. Watson, T.: Fact and artefact in confocal microscopy. Adv. Dent. Res. 11(4), 433–441 (1997)

    Article  Google Scholar 

  19. Hell, S., Reiner, G., Cremer, C., Stelzer, E.H.K.: Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169(3), 391–405 (1993)

    Article  Google Scholar 

  20. Power, R.M., Huisken, J.: A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14(4), 360–373 (2017)

    Article  Google Scholar 

  21. Mikut, R., et al.: Automated processing of zebrafish imaging data: a survey. Zebrafish 10(3), 401–421 (2013)

    Article  Google Scholar 

  22. Chi, N.C., et al.: Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev. 22(6), 734–739 (2008)

    Article  Google Scholar 

  23. Hogan, B.M., et al.: Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41(4), 396–398 (2009)

    Article  Google Scholar 

  24. Feng, J., Cheng, S.H., Chan, P.K., Ip, H.H.S.: Reconstruction and representation of caudal vasculature of zebrafish embryo from confocal scanning laser fluorescence microscopic images. Comput. Biol. Med. 35(10), 915–931 (2005)

    Article  Google Scholar 

  25. Feng, J., Ip, H.H.S., Cheng, S.H., Chan, P.K.: A relational-tubular (ReTu) deformable model for vasculature quantification of zebrafish embryo from microangiography image series. Comput. Med. Imaging Graph.: Off. J. Comput. Med. Imaging Soc. 28(6), 333–344 (2004)

    Article  Google Scholar 

  26. Feng, J., Ip, H.H.S.: A statistical assembled deformable model (SAMTUS) for vasculature reconstruction. Comput. Biol. Med. 39(6), 489–500 (2009)

    Article  Google Scholar 

  27. Chen, Q., et al.: Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLOS Biol. 10(8), e1001374 (2012)

    Article  Google Scholar 

  28. Pries, A.R., et al.: Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLOS Comput. Biol. 5(5), e1000394 (2009)

    Article  MathSciNet  Google Scholar 

  29. Lawson, N.D., Weinstein, B.M.: In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248(2), 307–318 (2002)

    Article  Google Scholar 

  30. Savage, A.M., et al.: Generation and characterisation of novel transgenic zebrafish allowing in vivo imaging of endothelial cell biology. Atherosclerosis 244, e10 (2016)

    Article  Google Scholar 

  31. Westerfield, M.: The Zebrafish Book: A Guide for Laboratory Use of Zebrafish (Brachydanio Rerio), 2nd edn. University of Oregon Press, Eugene (1993)

    Google Scholar 

  32. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253–310 (1995)

    Article  Google Scholar 

  33. Schindelin, J.: Fiji - an open source platform for biological image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  34. Lim, J.: Two-Dimensional Signal and Image Processing, pp. 469–476. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  35. Sternberg, S.: Biomedical Image Processing. Computer 16, 22–34 (1983)

    Article  Google Scholar 

  36. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  37. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1983)

    Google Scholar 

  38. D’Agostino, R.B., Belanger, A.: A suggestion for using powerful and informative tests of normality. Am. Stat. 44(4), 316–321 (1990)

    Google Scholar 

  39. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, Corfu (1999)

    Google Scholar 

  40. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  41. Cornea, N., Min, P., Silver, D.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for critically reading and clarifying important aspects of the manuscript. This work was supported by a University of Sheffield, Department of Infection, Immunity and Cardiovascular Disease, Imaging and Modelling Node Studentship. We are grateful to Aaron Savage and Rob Wilkinson for providing us with the tg(fli1a:Lifeact-mClover)\(^{sh{\textit{467}}}\) transgenic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Kugler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kugler, E., Chico, T., Armitage, P. (2018). Image Analysis in Light Sheet Fluorescence Microscopy Images of Transgenic Zebrafish Vascular Development. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics