Skip to main content

Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea

  • Chapter
  • First Online:
Marine Organisms as Model Systems in Biology and Medicine

Abstract

Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agata K, Tanaka T, Kobayash C, Kato K, Saitoh Y (2003) Intercalary regeneration in planarians. Dev Dyn 226:308–316

    Article  PubMed  CAS  Google Scholar 

  • Agata K, Saitoh Y, Nakajima E (2007) Unifying principles of regeneration I: epimorphosis versus morphallaxis. Dev Growth Differ 49:73–78

    Article  PubMed  Google Scholar 

  • Ariza L, Carmona R, Caňete A, Cano E, Muňoz-Chápuli R (2016) Coelomic epithelium derived-cells in visceral morphogenesis. Dev Dyn 245:307–322

    Article  PubMed  Google Scholar 

  • Aronson RB (1991) Predation, physical disturbance, and sublethal arm damage in ophiuroids: a Jurassic-Recent comparison. Mar Ecol Prog Ser 74(1):91–97

    Article  Google Scholar 

  • Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2005) Afuni, a novel transforming growth factor-beta gene is involved in arm regeneration by the brittle star Amphiura filiformis. Dev Genes Evol 215(8):393–401. https://doi.org/10.1007/s00427-005-0487-8

    Article  PubMed  CAS  Google Scholar 

  • Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2008) Coelomic expression of a novel bone morphogenetic protein in regenerating arms of the brittle star Amphiura filiformis. Dev Genes Evol 218:33–38

    Article  PubMed  CAS  Google Scholar 

  • Baumiller TK, Gahn FJ (2004) Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science 305(5689):1453–1455. https://doi.org/10.1126/science.1101009

    Article  PubMed  CAS  Google Scholar 

  • Ben Khadra Y, Said K, Thorndyke MC, Martinez P (2014) Homeobox genes expressed during echinoderm arm regeneration. Biochem Genet 52:166–180

    Article  PubMed  CAS  Google Scholar 

  • Ben Khadra Y, Ferrario C, Di Benedetto C, Said K, Bonasoro F, Candia Carnevali MD, Sugni M (2015a) Wound repair during arm regeneration in the red starfish Echinaster sepositus. Wound Repair Regen 23:611–622

    Article  PubMed  Google Scholar 

  • Ben Khadra Y, Ferrario C, Di Benedetto C, Said K, Bonasoro F, Candia Carnevali MD, Sugni M (2015b) Re-growth, morphogenesis, and differentiation during starfish arm regeneration. Wound Repair Regen 23:623–634

    Article  PubMed  Google Scholar 

  • Ben Khadra Y, Sugni M, Ferrario C, Bonasoro F, Varela Coelho A, Martinez P, Candia Carnevali MD (2017) An integrated view of asteroid regeneration: tissues, cells and molecules. Cell Tissue Res. https://doi.org/10.1007/s00441-017-2589-9

  • Biressi A, Ting Z, Dupont S, Dahlberg C, Di Benedetto C, Bonasoro F, Thorndyke M, Candia Carnevali MD (2010) Wound-healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis. Zoomorphology 129:1–19

    Article  Google Scholar 

  • Blowes LM, Egertová M, Liu Y, Davis GR, Terrill NJ, Gupta HS, Elphick MR (2017) Body wall structure in the starfish Asterias rubens. J Anat 231(3):325–341. Version of Record online: 16 JUL 2017. https://doi.org/10.1111/joa.12646

  • Bonasoro F, Candia Carnevali MD, Moss C, Thorndyke MC (1998) Epimorphic versus morphallactic mechanisms in arm regeneration of crinoids and asteroids: pattern of cell proliferation differentiation and cell lineage. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, pp 13–18

    Google Scholar 

  • Bourgoin A, Guillou M (1994) Arm regeneration in two populations of Acrocnida brachiata (Montagu) (Echinodermata: Ophiuroidea) in Douarnenez Bay, (Brittany: France): An ecological significance. J Exp Mar Biol Ecol 184(1):123–139

    Article  Google Scholar 

  • Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Biol 24(1):525–549

    Article  CAS  Google Scholar 

  • Burns G, Ortega-Martinez O, Thorndyke MC, Peck LS, Dupont S, Clark MS (2011) Dynamic gene expression profiles during arm regeneration in the brittle star Amphiura filiformis. J Exp Mar Biol Ecol 407(2):315–322. https://doi.org/10.1016/j.jembe.2011.06.032

    Article  CAS  Google Scholar 

  • Burns G, Ortega-Martinez O, Dupont S, Thorndyke MC, Peck LS, Clark MS (2012) Intrinsic gene expression during regeneration in arm explants of Amphiura filiformis. J Exp Mar Biol Ecol 413(C):106–112. https://doi.org/10.1016/j.jembe.2011.12.001

    Article  CAS  Google Scholar 

  • Candia Carnevali MD (2006) Regeneration in echinoderms: repair, regrowth and cloning. Invert Surviv J 3:64–76

    Google Scholar 

  • Candia Carnevali MD, Bonasoro F (1995) Arm regeneration and pattern formation in crinoids. In: Smith E, Campbell AC (eds) Echinoderm research. Balkema, Rotterdam, pp 245–253

    Google Scholar 

  • Candia Carnevali MD, Bonasoro F (2001) Microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426

    Article  PubMed  CAS  Google Scholar 

  • Candia Carnevali MD, Burighel P (2010) Regeneration in echinoderms and ascidians. In: Encyclopedia of life sciences (eLS). Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0022102

    Chapter  Google Scholar 

  • Candia Carnevali MD, Bruno L, Denis Donini S, Melone G (1989) Regeneration and morphogenesis in the feather star arm. In: Kiortsis V, Koussoulakos S, Wallace H (eds) Recent trends in regeneration research, NATO ASI Series, vol 172, pp 447–460

    Chapter  Google Scholar 

  • Candia Carnevali MD, Lucca E, Bonasoro F (1993) Mechanism of arm regeneration in the feather star Antedon mediterranea: healing of wound and early stages of development. J Exp Zool 267:299–317

    Article  Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Lucca E, Thorndyke MC (1995a) Pattern of cell proliferation in the early stages of arm regeneration in the feather star Antedon mediterranea. J Exp Zool 272:464–474

    Article  Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Wilkie IC (1995b) Coelom and “tinkering” in echinoids: morphofunctional adaptations of the lantern coelom. In: Lanzavecchia G, Valvassori R, Candia Carnevali MD (eds) Body cavities: function and phylogeny. Mucchi, Modena, pp 135–165

    Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Invernizzi R, Lucca E, Welsch U, Thorndyke MC (1996) Tissue distribution of monoamine neurotransmitters in normal and regenerating arms of the feather star Antedon mediterranea. Cell Tissue Res 285:341–352

    Article  Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Biale A (1997) Pattern of bromodeoxyuridine incorporation in the advanced stages of arm regeneration in the feather star Antedon mediterranea. Cell Tissue Res 289:363–374

    Article  PubMed  CAS  Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC (1998) Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: the potential of arm explants. Dev Genes Evol 208:421–430

    Article  PubMed  CAS  Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Trezzi M, Giardina A (1999) Nerve-dependent myogenesis in arm regeneration of Antedon mediterranea. In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. Balkema, Rotterdam, pp 139–143

    Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC, Galassi S (2001a) PCB exposure and regeneration in crinoids (Echinodermata). Mar Ecol Progr Ser 215:155–167

    Article  Google Scholar 

  • Candia Carnevali MD, Galassi S, Bonasoro F, Patruno M, Thorndyke MC (2001b) Regenerative response and endocrine disrupters in crinoid echinoderms: arm regeneration in Antedon mediterranea after experimental exposure to polychlorinated biphenyls. J Exp Biol 204:835–842

    PubMed  CAS  Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Thorndyke MC, Patruno M (2001c) Role of the nervous system in echinoderm regeneration. In: Barker M (ed) Echinoderms 2000. Balkema, Rotterdam, pp 5–20

    Google Scholar 

  • Candia Carnevali MD, Bonasoro F, Ferreri P, Galassi S (2003) Regenerative potential and effects of exposure to pseudo-estrogenic contaminants (4-nonylphenol) in the crinoid Antedon mediterranea. In: Féral JP, David B (eds) Echinoderms research 2001. Balkema, Lisse, pp 201–207

    Google Scholar 

  • Cannon JT, Swalla BJ, Halanych KM (2013) Hemichordate molecular phylogeny reveals a novel cold-water clade of harrimaniid acorn worms. Biol Bull 225(3):194–204

    Article  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) bone morphogenetic proteins. Growth Factors 22(4):233–241

    Article  PubMed  CAS  Google Scholar 

  • Clark MS, Souster T (2012) Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea). Aquat Biol 16:105–113

    Article  Google Scholar 

  • Clark MS, Dupont S, Rossetti H, Burns G, Thorndyke MC, Peck LS (2007) Delayed arm regeneration in the Antarctic brittle star Ophionotus victoriae. Aquat Biol 1:45–53

    Article  Google Scholar 

  • Clements LAJ, Bell SS, Kurdziel JP (1994) Abundance and arm loss of the infaunal brittlestar Ophiophragmus filograneus (Echinodermata: Ophiuroidea), with an experimental determination of regeneration rates in natural and planted seagrass beds. Mar Biol 121(1):97–104

    Article  Google Scholar 

  • Clevers H, Loh KM, Nusse R (2014) An integral program for tissue renewal and regeneration: Wnt signalling and stem cell control. Science 346(6205):1248012. https://doi.org/10.1126/science.1248012

    Article  PubMed  CAS  Google Scholar 

  • Cobb JLS (1995) The nervous systems of Echinodermata: Recent results and new approaches. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 407–424

    Chapter  Google Scholar 

  • Czarkwiani A, Dylus DV, Oliveri P (2013) Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis. Gene Expr Patterns 13:464–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czarkwiani A, Ferrario C, Dylus DV, Sugni M, Oliveri P (2016) Skeletal regeneration in the brittle star Amphiura filiformis. Front Zool 13:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dawydoff C (1901) Beiträge zur Kenntnis der Regenerationserscheinungen bei den Ophiuren. Z Wiss Zool 69:202–234

    Google Scholar 

  • Di Benedetto C, Parma L, Barbaglio A, Sugni M, Bonasoro F, Candia Carnevali MD (2014) Echinoderm regeneration: an in vitro approach using the crinoid Antedon mediterranea. Cell Tissue Res 358(1):189–201. https://doi.org/10.1007/s00441-014-1915-8

    Article  PubMed  Google Scholar 

  • Di Giorgio G, Rubilar T, Brogger MI (2015) Histological analysis after arm tip amputation in the brittle star Ophioplocus januarii (Echinodermata: Ophiuroidea). Rev Biol Trop (Int J Trop Biol) 63(2):297–308 ISSN: 0034-7744

    Google Scholar 

  • Dinsmore CE (2001) Regeneration: principles. eLS. https://doi.org/10.1038/npg.els.0001112

  • Dinsmore CE, Mescher AL (1998) The role of the nervous system in regeneration. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: from invertebrates to humans. Wiley, New York, pp 79–108

    Google Scholar 

  • Dolmatov IY (1993) Proliferation of tissues of regenerating aquapharyngeal complex in holothurians. Russ J Dev Biol 24:72–81

    Google Scholar 

  • Dunn MJ, Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Varela Coelho A (2013) Understanding regeneration through proteomics. Proteomics 13(3–4):686–709

    Google Scholar 

  • Dupont S, Thorndyke MC (2006) Growth or differentiation? Adaptive regeneration in the brittle star Amphiura filiformis. J Exp Biol 209(19):3873–3881

    Article  PubMed  Google Scholar 

  • Dupont S, Thorndyke M (2007) Bridging the regeneration gap: insights from echinoderm models. Nat Rev Genet 8. https://doi.org/10.1038/nrg1923-c1

  • Emson RH, Wilkie IC (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Annu Rev 18:155–250

    Google Scholar 

  • Ferrario C, Ben Khadra Y, Czarkwiani A, Zakrzewski A, Martinez P, Colombo G, Bonasoro F, Candia Carnevali MD, Oliveri P, Sugni M (2018) Fundamental aspects of arm repair phase in two echinoderm models. Dev Biol (Special Issue: Regeneration) 433(2):297–309

    CAS  Google Scholar 

  • Feuda R, Smith AB (2015) Phylogenetic signal dissection identifies the root of starfishes. PLoS One 10(5):e0123331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco CF, Santos R, Coelho AV (2011a) Exploring the proteome of an echinoderm nervous system: 2DE of the sea star radial nerve cord and the synaptosomal membranes subproteome. Proteomics 11:1359–1364

    Article  PubMed  CAS  Google Scholar 

  • Franco CF, Santos R, Coelho AV (2011b) Proteome characterization of starfish coelomocytes—the innate immune effector cells of echinoderms. Proteomics 11:3587–3592

    Article  PubMed  CAS  Google Scholar 

  • Franco CF, Santos R, Coelho AV (2014) Proteolytic events are relevant cellular responses during nervous system regeneration of the starfish Marthasterias glacialis. J Proteome 99:1–25

    Article  CAS  Google Scholar 

  • Gabre JL, Martinez P, Sköld HN, Ortega-Martinez O, Abril JF (2015) The coelomic epithelium transcriptome from a clonal sea star, Coscinasterias muricata. Mar Genomics. https://doi.org/10.1016/j.margen.2015.07.010

  • Galliot B, Ghila L (2010) Cell plasticity in homeostasis and regeneration. Mol Reprod Dev 77(10):837–855

    Article  PubMed  CAS  Google Scholar 

  • García-Arrarás JE, Dolmatov IY (2010) Echinoderms; potential model systems for studies on muscle regeneration. Curr Pharm Des 16:942–955

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Arrarás JE, Valentín-Tirado G, Flores JE, Rosa RJ, Rivera-Cruz A, San Miguel-Ruiz JE, Tossas K (2011) Cell dedifferentiation and epithelial to mesenchymal transitions during intestinal regeneration in H. glaberrima. BMC Dev Biol 11:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorshkov AN, Blinova MI, Pinaev GP (2009) Ultrastructure of coelomic epithelium and coelomocytes of the starfish Asterias rubens L. in norm and after wounding. Cell Tissue Biol 3(5):477–490

    Article  Google Scholar 

  • Guatelli S (2017) Coelomic epithelium and coelomocytes of Marthasterias glacialis (Asteroidea) in normal and regenerating arm-tips: microscopic anatomy and proteomics characterization. Master thesis, University of Milan

    Google Scholar 

  • Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL, Krishnan A, McDougall C, Motti CA, Shoguchi E, Wang T, Xiang X, Zhao M, Bose U, Shinzato C, Hisata K, Fujie M, Kanda M, Cummins SF, Satoh N, Degnan SM, Degnan BM (2017) The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 544(7649):231–234. https://doi.org/10.1038/nature22033

    Article  PubMed  CAS  Google Scholar 

  • Harrison FW, Chia F (1994) Microscopic anatomy of invertebrates. Echinodermata. Wiley, New York

    Google Scholar 

  • Heinzeller T, Welsch U (1994) Crinoidea. In: Harrison FW (ed) Microscopic anatomy of invertebrates, Echinodermata, vol 14. Wiley, New York, pp 9–148

    Google Scholar 

  • Hernroth B, Farahani F, Brunborg G, Dupont S, Dejmek A, Skold H (2010) Possibility of mixed progenitor cells in sea star arm regeneration. J Exp Zool (Mol Dev Evol) 6:457–468

    Article  CAS  Google Scholar 

  • Holm K, Dupont S, Skold H, Stenius A, Thorndyke MC, Hernroth B (2008) Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). J Exp Biol 211:2551–2558

    Article  PubMed  Google Scholar 

  • Hotchkiss FHC (2009) Arm stumps and regeneration models in Asteroidea (Echinodermata). Proc Biol Soc Wash 122:342–354

    Article  Google Scholar 

  • Huet M (1975) Le role du système nerveux au cours de la regeneration du bras chez une étoile de mer, Asterina gibbosa. Penn (Echinoderme, Astéride). J Embryol Exp Morphol 33:535–552

    PubMed  CAS  Google Scholar 

  • Huet M, Franquinet R (1981) Histofluorescence study and biochemical assay of catecholamines (dopamine and noradrenaline) during the course of arm-tip regeneration in the starfish Asterina gibbosa (Echinodermata, Asteroidea). Histochemistry 72:149–154

    Article  PubMed  CAS  Google Scholar 

  • Hughes SJM, Ruhl HA, Hawkins LE, Hauton C, Boorman B, Billett DSM (2011) Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea. J Exp Biol 14:2512–2521

    Article  Google Scholar 

  • Hyman LH (1955) The invertebrates. Echinodermata, vol XIV. McGrawHill, New York

    Google Scholar 

  • Janies DA, Witter Z, Linchangco GV, Foltz DW, Miller AK, Kerr AM et al (2016) EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms. BMC Bioinformatics 17(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King RS, Newmark PA (2012) The cell biology of regeneration. J Cell Biol 196(5):553–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kondo M, Akasaka K (2010) Regeneration in crinoids. Develop Growth Differ 52:57–68. https://doi.org/10.1111/j.1440-169X.2009.01159.x

    Article  CAS  Google Scholar 

  • Kumar A, Brockes JP (2012) Nerve-dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35(11):691–699

    Article  PubMed  CAS  Google Scholar 

  • Laurens N, Koolwijk P, De Maat PM (2006) Fibrin structure and wound healing. J Thromb Haemost 4:932–939

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JM (2010) Energetic costs of loss and regeneration of arms in stellate echinoderms. Integr Comp Biol 50(4):506–514. https://doi.org/10.1093/icb/icq027

    Article  PubMed  Google Scholar 

  • Lévesque M, Gatien S, Finnson K, Desmeules S, Villiard E, Pilote M, Philip A, Roy S (2007) Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One 2(11):e1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luttrell SM, Gotting K, Ross E, Alvarado AS, Swalla BJ (2016) Head regeneration in hemichordates is not a strict recapitulation of development. Dev Dyn 245(12):1159–1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mladenov PV (1983) Rate of arm regeneration and potential causes of arm loss in the feather star Florometra serratissima (Echinodermata: Crinoidea). Can J Zool 61(12):28732879

    Article  Google Scholar 

  • Mladenov PV, Bisgrove B, Asotra S, Burke RD (1989) Mechanisms of arm-tip regeneration in the sea star Leptasterias hexactis. Roux’s Arch Dev Biol 189:19–28

    Article  Google Scholar 

  • Morgan TH (1901) Regeneration. Macmillan, New York

    Book  Google Scholar 

  • Moss C and Thorndyke MC (1994) Regeneration in the starfish nervous system. In: David B, Guille A, Féral J-P, Roux M (eds) Echinoderms through time. Balkema, Rotterdam. ISBN: 9054105143

    Google Scholar 

  • Moss C, Hunter J, Thorndyke MC (1998) Pattern of bromodeoxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Philos Trans R Soc Lond B 353:421–436

    Article  CAS  Google Scholar 

  • Niehrs C (2001) Developmental biology. Solving a sticky problem. Nature 413:787–788

    Article  PubMed  CAS  Google Scholar 

  • O’Hara TD, Hugall AF, Thuy B, Moussalli A (2014) Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record. Curr Biol 24(16):1874–1879

    Article  PubMed  CAS  Google Scholar 

  • Oji T (2001) Fossil record of echinoderm regeneration with special regard to crinoids. Microsc Res Tech 55(6):397–402. https://doi.org/10.1002/jemt.1186

    Article  PubMed  CAS  Google Scholar 

  • Oji T (2015) Regeneration, predatory–prey interaction, and evolutionary history of articulate crinoids. Palaeoworld 24(4):389–392

    Article  Google Scholar 

  • Ottaviani E (2011) Immunocyte: the invertebrate counterpart of the vertebrate macrophage. Invert Surviv J 8(1):1–4

    Google Scholar 

  • Oulhen N, Heyland A, Carrier TJ, Zazueta-Novoa V, Fresques T, Laird J, Onorato TM, Janies D, Wessel G (2016) Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mech Dev 142:10–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parma L, Di Benedetto C, Denis-Donini S, Cossu G, Candia Carnevali MD (2006) Primary cell culture in crinoid echinoderms: exploring the plasticity potential of regenerative competent cells. In: Proceedings of 3rd European conference on regeneration, EMBO conference 2006, pp 21

    Google Scholar 

  • Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3:445–464

    Article  Google Scholar 

  • Patruno M, Thorndyke MC, Candia Carnevali MD, Bonasoro F, Beesley P (2001) Changes in ubiquitin conjugates and Hsp72 levels during arm regeneration in echinoderms. Mar Biotechnol 3:4–15

    Article  CAS  Google Scholar 

  • Patruno M, Smertenko A, Candia Carnevali MD, Bonasoro F, Beesley PW, Thorndyke MC (2002) Expression of transforming growth factor β-like molecules in normal and regenerating arms of the crinoid Antedon mediterranea: immunocytochemical and biochemical evidence. P R Soc Lond B Biol Sci 269:1741–1747

    Article  CAS  Google Scholar 

  • Patruno M, McGonnel I, Graham A, Beesley P, Candia Carnevali MD, Thorndyke MC (2003) AnBMP2/4 is a new member of the TGF-β superfamily isolated from a crinoid and involved in regeneration. Proc R Soc Lond B Biol Sci 270:1341–1347. https://doi.org/10.1098/rspb.2003.2367

    Article  CAS  Google Scholar 

  • Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones 12:331–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piovani L (2017) Skeletogenic processes in the regenerating arm of the brittle star Amphiura filiformis (Müller OF, 1776)

    Google Scholar 

  • Pisani D, Feuda R, Peterson KJ, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62:27–34

    Article  PubMed  Google Scholar 

  • Purushothaman S, Saxena S, Meghah V, Swamy CVB, Ortega-Martinez O, Dupont S, Idris M (2015) Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue-undergoing regeneration. J Proteomics 112:113–124 https://doi.org/10.1016/j.jprot.2014.08.011

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Gómez F, García-Arrarás JE (2010) Echinoderm immunity. Invertebr Surviv J 7:211–220

    Google Scholar 

  • Ramsay K, Bergmann M, Veale LO, Richardson CA, Kaiser MJ, Vize SJ, Feist SW (2001) Damage, autotomy and arm regeneration in starfish caught by towed demersal fishing gears. Mar Biol 138:527–536

    Article  Google Scholar 

  • Reich A, Dunn C, Akasaka K, Wessel G (2015) Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 10(3):e0119627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reichensperger A (1912) Beitra¨ge zur Histologie und zum Verlauf der Regeneration bei Crinoiden. Ztschr Wiss Zool 101:1–69

    Google Scholar 

  • Rieger RM, Lombardi J (1987) Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology 107:191–208

    Article  Google Scholar 

  • Sánchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7:873–884

    Article  PubMed  CAS  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science (New York, NY) 314(5801):941–952

    Google Scholar 

  • Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR (2016) Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 6:150224. https://doi.org/10.1098/rsob.150224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharlaimova NS, Petukhova OA (2012) Characteristics of populations of the coelomic fluid and coelomic epithelium cells from the starfish Asterias rubens L. able attach to and spread on various substrates. Cell Tissue Biol 6:176–188

    Article  Google Scholar 

  • Sharlaimova NS, Pinaev GP, Petukhova OA (2010) Comparative analysis of behavior and proliferative activity in culture of cells of coelomic fluid and of cells of various tissues of the sea star Asterias rubens L. isolated from normal and injured animals. Cell Tissue Biol 4(3):280–288

    Article  Google Scholar 

  • Sköld M, Rosenberg R (1996) Arm regeneration frequency in eight species of Ophiuroidea (Echinodermata) from European sea areas. J Sea Res 35:353–362

    Article  Google Scholar 

  • Smith JE (1937) On the nervous system of the starfish Marthasterias glacialis (L.). Philos Trans R Soc Lond B Biol Sci 227:111–173

    Article  Google Scholar 

  • Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, Henson JH, Li C, Man Lun C, Majeske AJ, Matranga V, Nair SV, Rast JP, Raftos DA, Roth M, Sacchi S, Schranke CS, Stensvåg K (2010) Echinoderm immunity. In: Invertebrate immunity, vol 708. Springer, New York, pp 260–301

    Chapter  Google Scholar 

  • Soong K, Shen Y, Tsenq S, Chen C (1997) Regeneration and Potential Functional Differentiation of Arms in the Brittlestar, Ophiocoma scolopendrina (Lamarck) (Echinodermata: Ophiuroidea). Zool Stud 36(2):90–97

    Google Scholar 

  • Sugni M, Mozzi D, Barbaglio A, Bonasoro F, Candia Carnevali MD (2007) Endocrine Disrupting Compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 16:95–108

    Article  PubMed  CAS  Google Scholar 

  • Sugni M, Wilkie IC, Burighel P, Candia Carnevali MD (2010) New evidence of serotonin involvement in the neurohumoral control of crinoid arm regeneration: effects of parachlorophenilanine and methiothepin. J Mar Biol Assoc UK 90(03):555–562

    Article  CAS  Google Scholar 

  • Tanaka EM, Ferretti P (2010) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci Lond 10:713–723

    Article  CAS  Google Scholar 

  • Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, Copley RR (2014) Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc Biol Sci 281(1786)

    Google Scholar 

  • Thorndyke MC, Candia Carnevali MD (2001) Regeneration neurohormones and growth factors in echinoderms. Can J Zool 79(7):1171–1208

    Article  CAS  Google Scholar 

  • Thorndyke MC, Chen W-C, Beesley PW, Patruno M (2001) Molecular approach to echinoderm regeneration. Microsc Res Tech 55:474–485

    Article  PubMed  CAS  Google Scholar 

  • Thuy B, Stöhr S (2016) A new morphological phylogeny of the Ophiuroidea (Echinodermata) accords with molecular evidence and renders microfossils accessible for cladistics. PLoS One 11(5):e0156140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valoti G, Ferrario C, Candia Carnevali MD, Sugni M (2016) Regenerative potential of Echinaster sepositus (Retzius, 1783) arm explants: macro- and microscopic analyses. In: Proceedings of the LXXVII Congresso Nazionale dell’Unione Zoologica Italiana

    Google Scholar 

  • Veeman MT, Axelrod JD, Moon RT (2003) A second canon: functions and mechanisms of b-catenin-independent Wnt signaling. Dev Cell 5:367–377

    Article  PubMed  CAS  Google Scholar 

  • Vickery MCL, Vickery MS, McClintock JB, Amsler CD (2001) Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration. Gene 262:73–80

    Article  PubMed  CAS  Google Scholar 

  • Walsh GE, McLaughlin LL, Louie MK, Deans CH, Lores EM (1986) Inhibition of arm regeneration by Ophioderma brevispina (Echinodermata, Ophiuroidea) by tributyltin oxide and triphenyltin oxide. Ecotoxicol Environ Saf 12(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Whyte JL, Smith AA, Helms JA (2012) Wnt signaling and injury repair. Cold Spring Harb Perspect Biol 4(8):a008078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkie IC (1978) Arm autotomy in brittle stars (Echinodermata: Ophiuroidea). J Zool Lond 186:311–330

    Article  Google Scholar 

  • Wilkie IC (2001) Autotomy as a prelude to regeneration in echinoderms. Microsc Res Tech 55(6):369–396

    Article  PubMed  CAS  Google Scholar 

  • Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88

    Article  PubMed  CAS  Google Scholar 

  • Wu S-Y, Ferkowicz M, McClay DR (2007) Ingression of primary mesenchyme cells of the sea urchin embryo: A precisely timed epithelial mesenchymal transition. Birth Defects Res C Embryo Today Rev 81(4):241–252. https://doi.org/10.1002/bdrc.20113

    Article  CAS  Google Scholar 

  • Yokoyama LQ, Amaral ACZ (2010) Arm regeneration in two populations of Ophionereis reticulate (Echinodermata, Ophiuroidea). Iheringia Sér Zool Porto Alegre 100(2):123–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Sugni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben Khadra, Y. et al. (2018). Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_14

Download citation

Publish with us

Policies and ethics