Skip to main content

State Estimation in Networked Control Systems with Delayed and Lossy Acknowledgments

  • Conference paper
  • First Online:
Multisensor Fusion and Integration in the Wake of Big Data, Deep Learning and Cyber Physical System (MFI 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 501))

Included in the following conference series:

Abstract

In this article, we are concerned with state estimation in Networked Control Systems where both control inputs and measurements are transmitted over networks which are lossy and introduce random transmission delays. We focus on the case where acknowledgment packets transmitted by the actuator upon reception of applicable control inputs are also subject to delays and losses, as opposed to the common notion of TCP-like communication where successful transmissions are acknowledged instantaneously and without losses. As a consequence, the state estimator in the considered setup has only partial and belated knowledge concerning the actually applied control inputs which results in additional uncertainty. We derive an estimator by extending an existing approach for the special case of UDP-like communication which maintains estimates of the applied control inputs that are incorporated into the estimation of the plant state. The presented estimator is compared to the original approach in terms of Monte Carlo simulations where its increased robustness towards imperfect knowledge of the underlying networks is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The mixture then essentially degenerates into a single Gaussian.

References

  1. Zhang, L., Gao, H., Kaynak, O.: Network-induced constraints in networked control systems a survey. IEEE Trans. Ind. Inform. 9(1), 403–416 (2013). https://doi.org/10.1109/TII.2012.2219540

    Article  Google Scholar 

  2. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007). https://doi.org/10.1109/JPROC.2006.887288

    Article  Google Scholar 

  3. Baillieul, J., Antsaklis, P.J.: Control and communication challenges in networked real-time systems. Proc. IEEE 95(1), 9–28 (2007). https://doi.org/10.1109/JPROC.2006.887290

    Article  Google Scholar 

  4. Heemels, W.M.H., Teel, A.R., Van de Wouw, N., Nesic, D.: Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance. IEEE Trans. Autom. Control 55(8), 1781–1796 (2010). https://doi.org/10.1109/TAC.2010.2042352

    Article  MathSciNet  MATH  Google Scholar 

  5. Bemporad, A.: Predictive control of teleoperated constrained systems with unbounded communication delays. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 2, pp. 2133–2138. IEEE (1998). https://doi.org/10.1109/CDC.1998.758651

  6. Gupta, V., Sinopoli, B., Adlakha, S., Goldsmith, A., Murray, R.: Receding horizon networked control. In: Proceedings of the Allerton Conference on Communication Control, and Computing (2006)

    Google Scholar 

  7. Quevedo, D.E., Nesic, D.: Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts. IEEE Trans. Autom. Control 56(2), 370–375 (2011). https://doi.org/10.1109/TAC.2010.2095950

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischer, J., Hekler, A., Dolgov, M., Hanebeck, U.D.: Optimal sequence-based LQG control over TCP-like networks subject to random transmission delays and packet losses. In: 2013 American Control Conference, Washington, D.C., USA, pp. 1543–1549 (2013). https://doi.org/10.1109/ACC.2013.6580055

  9. Dolgov, M., Fischer, J., Hanebeck, U.D.: Infinite-horizon sequence-based networked control without acknowledgments. In: 2015 American Control Conference (ACC), Chicago, Illinois, USA, pp. 402–408 (2015). https://doi.org/10.1109/ACC.2015.7170769

  10. Liu, G.P., Xia, Y., Chen, J., Rees, D., Hu, W.: Networked predictive control of systems with random network delays in both forward and feedback channels. IEEE Trans. Ind. Electron. 54(3), 1282–1297 (2007). https://doi.org/10.1109/TIE.2007.893073

    Article  Google Scholar 

  11. Liu, G.: Predictive controller design of networked systems with communication delays and data loss. IEEE Trans. Circuits Syst. II Express Briefs 57(6), 481–485 (2010). https://doi.org/10.1109/TCSII.2010.2048377

    Article  Google Scholar 

  12. Rosenthal, F., Noack, B., Hanebeck, U.D.: State estimation in networked control systems with delayed and lossy acknowledgments. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Korea, pp. 435–441 (2017). https://doi.org/10.1109/MFI.2017.8170359

  13. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004). https://doi.org/10.1109/TAC.2004.834121

    Article  MathSciNet  MATH  Google Scholar 

  14. Schenato, L.: Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans. Autom. Control 53(5), 1311–1317 (2008). https://doi.org/10.1109/TAC.2008.921012

    Article  MathSciNet  MATH  Google Scholar 

  15. Thapliyal, O., Nandiganahalli, J.S., Hwang, I.: Optimal state estimation for LTI systems with imperfect observations. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2795–2800. IEEE (2017). https://doi.org/10.1109/CDC.2017.8264065

  16. Epstein, M., Shi, L., Murray, R.M.: An estimation algorithm for a class of networked control systems using UDP-like communication schemes. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5597–5603. IEEE (2006). https://doi.org/10.1109/CDC.2006.377481

  17. Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of control and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007). https://doi.org/10.1109/JPROC.2006.887306

    Article  Google Scholar 

  18. Moayedi, M., Foo, Y.K., Soh, Y.C.: Filtering for networked control systems with single/multiple measurement packets subject to multiple-step measurement delays and multiple packet dropouts. Int. J. Syst. Sci. 42(3), 335–348 (2011). https://doi.org/10.1080/00207720903513335

    Article  MathSciNet  MATH  Google Scholar 

  19. Fischer, J., Hekler, A., Hanebeck, U.D.: State estimation in networked control systems. In: 2012 15th International Conference on Information Fusion, Singapore, pp. 1947–1954 (2012)

    Google Scholar 

  20. Schenato, L.: To zero or to hold control inputs with lossy links? IEEE Trans. Autom. Control 54(5), 1093–1099 (2009). https://doi.org/10.1109/TAC.2008.2010999

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, D., Yoo, H.: TCP performance improvement considering ACK loss in ad hoc networks. J. Commun. Netw. 10(1), 98–107 (2008). https://doi.org/10.1109/JCN.2008.6388333

    Article  MathSciNet  Google Scholar 

  22. Cardwell, N., Savage, S., Anderson, T.: Modeling TCP latency. In: Proceedings of IEEE INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1742–1751. IEEE (2000). https://doi.org/10.1109/INFCOM.2000.832574

  23. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer Science & Business Media, New York (2006)

    MATH  Google Scholar 

  24. Blom, H., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. Autom. Control 33(8), 780–783 (1988). https://doi.org/10.1109/9.1299

    Article  MATH  Google Scholar 

  25. Ackerson, G., Fu, K.: On state estimation in switching environments. IEEE Trans. Autom. Control 15(1), 10–17 (1970). https://doi.org/10.1109/TAC.1970.1099359

    Article  Google Scholar 

  26. Costa, O.: Linear minimum mean square error estimation for discrete-time markovian jump linear systems. IEEE Trans. Autom. Control 39(8), 1685–1689 (1994). https://doi.org/10.1109/9.310052

    Article  MathSciNet  MATH  Google Scholar 

  27. Costa, O.L.V., Guerra, S.: Stationary filter for linear minimum mean square error estimator of discrete-time markovian jump systems. IEEE Trans. Autom. Control 47(8), 1351–1356 (2002). https://doi.org/10.1109/TAC.2002.800745

    Article  MathSciNet  MATH  Google Scholar 

  28. Terra, M.H., Ishihara, J.Y., Jesus, G.: Information filtering and array algorithms for discrete-time markovian jump linear systems. IEEE Trans. Autom. Control 54(1), 158–162 (2009). https://doi.org/10.1109/TAC.2008.2007181

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1255–1321 (2005). https://doi.org/10.1109/TAES.2005.1561886

    Article  Google Scholar 

  30. Bar-Shalom, Y., Chen, H.: IMM estimator with out-of-sequence measurements. IEEE Trans. Aerosp. Electron. Syst. 41(1), 90–98 (2005). https://doi.org/10.1109/TAES.2005.1413749

    Article  Google Scholar 

  31. Fioravanti, A.R., Gonçalves, A.P., Geromel, J.C.: Filtering of discrete-time markov jump linear systems with cluster observation: an approach to Gilbert-Elliot’s network channel. In: Control Conference (ECC), 2009 European, pp. 2283–2288. IEEE (2009)

    Google Scholar 

  32. Gonçalves, A.P., Fioravanti, A.R., Geromel, J.C.: Markov jump linear systems and filtering through network transmitted measurements. Signal Process. 90(10), 2842–2850 (2010). https://doi.org/10.1016/j.sigpro.2010.04.007

    Article  MATH  Google Scholar 

  33. Matei, I., Baras, J.S.: Optimal state estimation for discrete-time markovian jump linear systems, in the presence of delayed output observations. IEEE Trans. Autom. Control 56(9), 2235–2240 (2011). https://doi.org/10.1109/TAC.2011.2160027

    Article  MathSciNet  MATH  Google Scholar 

  34. Larsen, T.D., Andersen, N.A., Ravn, O., Poulsen, N.K.: Incorporation of time delayed measurements in a discrete-time kalman filter. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, pp. 3972–3977. IEEE (1998). https://doi.org/10.1109/CDC.1998.761918

  35. Jung, M., Rosenthal, F.: CoCPN-Sim (2018). https://github.com/spp1914-cocpn/cocpn-sim

  36. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems, vol. 1. Wiley-Interscience, New York (1972)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the German Science Foundation (DFG) within the Priority Programme 1914 “Cyber-Physical Networking”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Rosenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosenthal, F., Noack, B., Hanebeck, U.D. (2018). State Estimation in Networked Control Systems with Delayed and Lossy Acknowledgments. In: Lee, S., Ko, H., Oh, S. (eds) Multisensor Fusion and Integration in the Wake of Big Data, Deep Learning and Cyber Physical System. MFI 2017. Lecture Notes in Electrical Engineering, vol 501. Springer, Cham. https://doi.org/10.1007/978-3-319-90509-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90509-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90508-2

  • Online ISBN: 978-3-319-90509-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics