Skip to main content

Prediction Models for Lynch Syndrome

  • Chapter
  • First Online:
Hereditary Colorectal Cancer

Abstract

Numerous strategies are currently available for the identification of individuals and families with Lynch syndrome that have evolved considerably over time. Prediction models for Lynch syndrome can quantify an individual’s risk of carrying a germline mismatch repair gene mutation and help clinicians decide who should be referred for further genetic risk assessment and/or genetic testing. In this chapter, we review the main prediction models developed for the identification of individuals at risk for Lynch syndrome with a focus on their specific features, performance measures as assessed by several validation studies, comparison with other clinical and molecular strategies for the diagnosis of Lynch syndrome, and their implementation and potential uses in clinical practice. We also introduce a new prediction model that provides prospective cancer risk estimates for individuals with MMR gene mutations based on comprehensive literature reviews. Lastly, we address the future considerations related to the use of clinical prediction models, including the impact of next-generation DNA sequencing technologies and the increased uptake of simultaneous testing of multiple genes (multigene panel testing) associated with inherited cancer susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Win AK, Jenkins MA, Dowty JG, et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2017;26:404–412

    Article  Google Scholar 

  2. Giardiello FM, Allen JI, Axilbund JE, et al. US Multi-Society Task Force on Colorectal Cancer. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2014;147:502–26.

    Article  Google Scholar 

  3. Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62.

    Article  Google Scholar 

  4. Jasperson KW, Tuohy TT, Neklason DW, et al. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–58.

    Article  CAS  Google Scholar 

  5. Jenkins MA, Baglietto L, Dowty JG, et al. Cancer risks for mismatch repair gene mutation carriers: a population-based early onset case-family study. Clin Gastroenterol Hepatol. 2006;4:489–98.

    Article  CAS  Google Scholar 

  6. Stoffel E, Mukherjee B, Raymond VM, et al. Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome. Gastroenterology. 2009;137:1621–7.

    Article  Google Scholar 

  7. Engel C, Loeffler M, Steinke V, et al. Risks of less common cancers in proven mutation carriers with Lynch syndrome. J Clin Oncol. 2012;30:4409–15.

    Article  Google Scholar 

  8. Win AK, Young JP, Lindor NM, et al. Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol. 2012;30:958–64.

    Article  CAS  Google Scholar 

  9. Jarvinen HJ, Aarnio M, Mustonen H, et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology. 2000;118:829–34.

    Article  CAS  Google Scholar 

  10. de Jong AE, Hendiks YM, Kleibeuker JH, et al. Decrease in mortality in Lynch syndrome families because of surveillance. Gastroenterology. 2006;130:665–71.

    Article  Google Scholar 

  11. Vasen HF, Abdirahman M, Brohet R, et al. One to 2- year surveillance intervals reduce risk of colorectal cancer in families with Lynch syndrome. Gastroenterology. 2010;138:2300–6.

    Article  Google Scholar 

  12. Lindor NM, Petersen GM, Hadley DW, et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA. 2006;296:1507–17.

    Article  CAS  Google Scholar 

  13. Vasen HF, Blanco I, Aktan-Collan K, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62:812–23.

    Article  CAS  Google Scholar 

  14. Ouakrim AD, Dashti SG, Buchanan DD, et al. Aspirin, ibuprofen, and the risk of colorectal cancer in Lynch syndrome. J Natl Cancer Inst. 2015;107. https://doi.org/10.1093/jnci/djv170.

  15. Park JG, Vasen HF, Park KJ, et al. Suspected hereditary non-polyposis colorectal cancer: International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC) criteria and results of genetic diagnosis. Dis Colon Rectum. 1999;42:710–5.

    Google Scholar 

  16. Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261–8.

    Google Scholar 

  17. Rodriguez-Bigas MA, Boland CR, Hamilton SR, et al. A National Cancer Institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst. 1997;89:1758–62.

    Article  CAS  Google Scholar 

  18. Kastrinos F, Uno H, Ukaegbu C, et al. Development and validation of the PREMM5 model for comprehensive risk assessment of Lynch syndrome. J Clin Oncol. 2017;35:2165–72.

    Article  Google Scholar 

  19. Kastrinos F, Steyerberg E, Mercado R, et al. The PREMM1,2,6 model predicts risk of germline MLH1 , MSH2 , and MSH6 germline mutations based on cancer history. Gastroenterology. 2011;140:73–81.

    Article  CAS  Google Scholar 

  20. Barnetson RA, Tenesa A, Farrington SM, et al. Identification and survival of carriers of mutations in DNA mismatch repair genes in colon cancers. N Engl J Med. 2006;354:2751–63.

    Article  CAS  Google Scholar 

  21. Chen S, Wang W, Lee S, et al. Prediction of germline mutations and cancer risk in the Lynch syndrome. JAMA. 2006;296:1479–87.

    Article  CAS  Google Scholar 

  22. Hampel H. Genetic counseling and cascade genetic testing in Lynch syndrome. Familial Cancer. 2016;15:423–7.

    Article  Google Scholar 

  23. Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.

    Article  CAS  Google Scholar 

  24. Julié C, Trésallet C, Brouquet A, et al. Identification in daily practice of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer): revised Bethesda guidelines-based approach versus molecular screening. Am J Gastroenterol. 2008;103:2825–35.

    Article  Google Scholar 

  25. Pérez-Carbonell L, Ruiz-Ponte C, Guarinos C, et al. Comparison between universal molecular screening for Lynch syndrome and revised Bethesda guidelines in a large population-based cohort of patients with colorectal cancer. Gut. 2012;61:865–72.

    Article  Google Scholar 

  26. Grover S, Stoffel EM, Bussone L, et al. Physician assessment of family cancer history and referral for genetic evaluation in colorectal cancer patients. Clin Gastroenterol Hepatol. 2004;2:813–9.

    Article  Google Scholar 

  27. Flynn BS, Wood ME, Ashikaga T, et al. Primary care physicians’ use of family history for cancer risk assessment. BMC Fam Pract. 2010;11:45.

    Article  Google Scholar 

  28. Parsons MT, Buchanan DD, Thompson B, et al. Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet. 2012;49:151–7.

    Article  CAS  Google Scholar 

  29. Beamer LC, Grant ML, Espenschied CR, et al. Reflex immunohistochemistry and microsatellite instability testing of colorectal tumors for Lynch syndrome among US cancer programs and follow-up of abnormal results. J Clin Oncol. 2012;30:1058–63.

    Article  Google Scholar 

  30. Wijnen JT, Vasen HF, Khan PM, et al. Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med. 1998;339:511–8.

    Google Scholar 

  31. Lipton LR, Johnson V, Cummings C, et al. Refining the Amsterdam Criteria and Bethesda Guidelines: testing algorithms for the prediction of mismatch repair mutation status in the familial cancer clinic. J Clin Oncol. 2004;22:4934–43.

    Google Scholar 

  32. Balmaña J, Stockwell DH, Steyerberg EW, et al. Prediction of MLH1 and MSH2 mutations in Lynch syndrome. JAMA. 2006;296:1469–78.

    Article  Google Scholar 

  33. Kastrinos F, Ojha RP, Leenen C, et al. Comparison of prediction models for Lynch syndrome among individuals with colorectal cancer. J Natl Cancer Inst. 2015;108(2). pii: djv308.

    Google Scholar 

  34. Balaguer F, Balmaña J, Castellví-Bel S, et al. Validation and extension of the PREMM1,2 model in a population-based cohort of colorectal cancer patients. Gastroenterology. 2008;134:39–46.

    Article  Google Scholar 

  35. Balmaña J, Balaguer F, Castellví-Bel S, et al. Comparison of predictive models, clinical criteria and molecular tumor screening for the identification of patients with Lynch syndrome in a population-based cohort of colorectal cancer patients. J Med Genet. 2008;45:557–63.

    Article  Google Scholar 

  36. Monzon JG, Cremin C, Armstrong L, et al. Validation of predictive models for germline mutations in DNA mismatch repair genes in colorectal cancer. Int J Cancer. 2010;126:930–9.

    CAS  PubMed  Google Scholar 

  37. Green RC, Parfrey PS, Woods MO, et al. Prediction of Lynch syndrome in consecutive patients with colorectal cancer. J Natl Cancer Inst. 2009;101:331–40.

    Article  Google Scholar 

  38. Tresallet C, Brouquet A, Julié C, et al. Evaluation of predictive models in daily practice for the identification of patients with Lynch syndrome. Int J Cancer. 2012;130:1367–77.

    Article  Google Scholar 

  39. Pouchet CJ, Wong N, Chong G, et al. A comparison of models used to predict MLH1, MSH2 and MSH6 mutation carriers. Ann Oncol. 2009;20:681–8.

    Article  CAS  Google Scholar 

  40. Khan O, Blanco A, Conrad P, et al. Performance of Lynch syndrome predictive models in a multi-center US referral population. Am J Gastroenterol. 2011;106:1822–7.

    Article  CAS  Google Scholar 

  41. Kastrinos F, Steyerberg EW, Balmaña J, et al. Comparison of the clinical prediction model PREMM1,2,6 and molecular testing for the systematic identification of Lynch syndrome in colorectal cancer. Gut. 2013;62:272–9.

    Article  Google Scholar 

  42. National Comprehensive Cancer Network Guidelines Version 1.2017 Genetic/Familial High Risk Assessment: Colorectal. MS-15; Retrieved from https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Accessed 3 Aug 2017.

  43. Ladabaum U, Wang G, Terdiman J, et al. Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med. 2011;155:69–79.

    Article  Google Scholar 

  44. Barzi A, Sadeghi S, Kattan MW, et al. Comparative effectiveness of screening strategies for Lynch syndrome. J Natl Cancer Inst. 2015;107(4):dvj005.

    Article  Google Scholar 

  45. Dinh TA, Rosner BI, Atwood JC, et al. Health benefits and cost-effectiveness of primary genetic screening for Lynch syndrome in the general population. Cancer Prev Res. 2011;4:9–22.

    Article  Google Scholar 

  46. Plichta JK, Griffin M, Thakuria J, et al. What’s new in genetic testing for cancer susceptibility? Oncology (Williston Park). 2016;30:787–99.

    Google Scholar 

  47. ten Broeke SW, Nielsen M. A PMS2-specific colorectal surveillance guide. Genet Med. 2015;17:684.

    Article  CAS  Google Scholar 

  48. Braun D, Yang J, Griffin M, et al. A clinical decision support tool to predict cancer risk for commonly tested cancer-related germline mutations. Manuscript under review.

    Google Scholar 

  49. Strande NT, Riggs ER, Buchanan AH, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100:895–906.

    Google Scholar 

  50. Cronin KA, Ries LA, Edwards BK. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Cancer. 2014;120(Suppl 23):3755–7.

    Article  Google Scholar 

  51. Drohan B, Ozanne EM, Hughes KS. Electronic health records and the management of women at high risk of hereditary breast and ovarian cancer. Breast J. 2009;15(Suppl 1):S46–55.

    Article  Google Scholar 

  52. Doerr M, Teng K. Family history: still relevant in the genomics era. Cleve Clin J Med. 2012;79:331–6.

    Article  Google Scholar 

  53. Kastrinos F, Allen JI, Stockwell DH, et al. Development and validation of a colon cancer risk assessment tool for patients undergoing colonoscopy. Am J Gastroenterol. 2009;104:1508–18.

    Article  Google Scholar 

  54. Gunaratnam NT, Akce M, Al Natour R, et al. Screening for cancer genetic syndromes with a simple risk-assessment tool in a community-based open-access colonoscopy practice. Am J Gastroenterol. 2016;111:589.

    Article  Google Scholar 

  55. Guivatchian T, Koeppe ES, Baker JR, et al. Family history in colonoscopy patients: feasibility and performance of electronic and paper-based surveys for colorectal cancer risk assessment in the outpatient setting. Gastrointest Endosc. 2017;86:684-691.

    Article  Google Scholar 

  56. Luba DG, DiSario JA, Rock C, et al. Community practice implementation of a self-administered version of PREMM1,2,6 to assess risk for Lynch syndrome. Clin Gastroenterol Hepatol. 2018;16:49–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fay Kastrinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kastrinos, F., Idos, G., Parmigiani, G. (2018). Prediction Models for Lynch Syndrome. In: Valle, L., Gruber, S., Capellá, G. (eds) Hereditary Colorectal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-74259-5_19

Download citation

Publish with us

Policies and ethics