Skip to main content

Mitochondrial Disruption in Cardiovascular Diseases

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics
  • 1996 Accesses

Abstract

Mitochondrial dysfunction is a critical factor in the initiation and progression of heart failure. Impairment of mitochondrial metabolism decreases energy production and leads to enhanced oxidative and calcium mediated injury to the myocardium. Mitochondrial dysfunction leads to progressive contractile dysfunction, ultimately to cardiomyocyte death. Myocardial ischemia and infarction, as well as pressure overload, are external causes of heart failure associated with impaired mitochondrial function. Genetic defects in both nuclear-encoded and mitochondrial DNA-encoded mitochondrial proteins lead to cardiomyopathy and eventual heart failure, highlighting those mitochondrial functions required to support normal cardiac physiology. Maladaptive neurohumoral response(s) to decreased cardiac contractile function activates cardiomyocyte signaling that results in impaired cardiac metabolism. For these reasons, cardiac metabolism in general and mitochondrial function remain novel therapeutic targets. Future treatment approaches include modulation of cardiac substrate selection, biochemical bypass of metabolic defects in mitochondria, and ultimately the manipulation of mitochondrial dynamics to foster the repair or removal of dysfunctional mitochondria, with accompanying biogenesis of fully-functioning mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel ED (2004) Glucose transport in the heart. Front Biosci 9:201–215

    Article  CAS  PubMed  Google Scholar 

  • Aldakkak M, Stowe DF, Chen Q et al (2008) Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release. Cardiovasc Res 77:406–415

    CAS  PubMed  Google Scholar 

  • Aldakkak M, Camara AK, Heisner JS et al (2011) Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol Res 64:381–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluri HS, Chen Q, Hu Y et al (2012) Apoptosis Signal Regulating Kinase-1 Inhibitor Decreases Mitochondrial Damage during Ischemia-Reperfusion. Circulation 124:A15526. (abstract)

    Google Scholar 

  • Aluri HS, Simpson DC, Allegood JC et al (2014) Electron flow into cytochrome c coupled with reactive oxygen species from the electron transport chain converts cytochrome c to a cardiolipin peroxidase: role during ischemia-reperfusion. Biochim Biophys Acta 1840:3199–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrosio G, Zweier JL, Duilio C et al (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532–18541

    CAS  PubMed  Google Scholar 

  • Baba N, Sharma HM (1971) Histochemistry of lactic dehydrogenase in heart and pectoralis muscles of rat. J Cell Biol 51:621–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babot M, Galkin A (2013) Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I. Biochem Soc Trans 41:1325–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  • Belikova NA, Vladimirov YA, Osipov AN et al (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45:4998–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benit P, Pelhaitre A, Saunier E et al (2017) Paradoxical inhibition of glycolysis by pioglitazone opposes the mitochondriopathy caused by AIF deficiency. EBioMedicine 17:75–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhandari B, Subramanian L (2007) Ranolazine, a partial fatty acid oxidation inhibitor, its potential benefit in angina and other cardiovascular disorders. Recent Pat Cardiovasc Drug Discov 2:35–39

    Article  CAS  PubMed  Google Scholar 

  • Borutaite V, Brown GC (2003) Mitochondria in apoptosis of ischemic heart. FEBS Lett 541:1–5

    Article  CAS  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2007) Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res 75:283–290

    Article  CAS  PubMed  Google Scholar 

  • Buchwald A, Till H, Unterberg C et al (1990) Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J 11:509–516

    Article  CAS  PubMed  Google Scholar 

  • Bugiani M, Tiranti V, Farina L et al (2005) Novel mutations in COX15 in a long surviving Leigh syndrome patient with cytochrome c oxidase deficiency. J Med Genet 42:e28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron JM, Mackay N, Feigenbaum A et al (2015) Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome. Eur J Paediatr Neurol 19:525–532

    Article  PubMed  Google Scholar 

  • Cao CM, Yan WY, Liu J et al (2006) Attenuation of mitochondrial, but not cytosolic, Ca2+ overload reduces myocardial injury induced by ischemia and reperfusion. Acta Pharmacol Sin 27:911–918

    Article  CAS  PubMed  Google Scholar 

  • Castillero E, Akashi H, Pendrak K et al (2015) Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 309:H459–H470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler MP, Kerner J, Huang H et al (2004) Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol 287:H1538–H1543

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Lesnefsky EJ (2011) Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett 585:921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Lesnefsky EJ (2015) Heart mitochondria and calpain 1: location, function, and targets. Biochim Biophys Acta 1852:2372–2378

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Lesnefsky EJ (2017) A new strategy to treat mitochondrial disease without improvement of mitochondrial function? EBioMedicine 18:19–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S et al (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Hoppel CL, Lesnefsky EJ (2006a) Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria. J Pharmacol Exp Ther 316:200–207

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Moghaddas S, Hoppel CL et al (2006b) Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 319:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Camara AK, Stowe DF et al (2007) Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292:C137–C147

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Moghaddas S, Hoppel CL et al (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 294:C460–C466

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Paillard M, Gomez L et al (2011) Activation of mitochondrial mu-calpain increases AIF cleavage in cardiac mitochondria during ischemia-reperfusion. Biochem Biophys Res Commun 415:533–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Paillard M, Gomez L et al (2012a) Postconditioning modulates ischemia-damaged mitochondria during reperfusion. J Cardiovasc Pharmacol 59:101–108

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Ross T, Hu Y et al (2012b) Blockade of electron transport at the onset of reperfusion decreases cardiac injury in aged hearts by protecting the inner mitochondrial membrane. J Aging Res 2012:753949

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Thompson J, Hu Y et al (2016) Metformin treatment decreases the er stress-mediated mitochondrial injury. Circulation 134:A17009

    Google Scholar 

  • Chicco AJ, Sparagna GC, Mccune SA et al (2008) Linoleate-rich high-fat diet decreases mortality in hypertensive heart failure rats compared with lard and low-fat diets. Hypertension 52:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiong M, Wang ZV, Pedrozo Z et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2:e244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole LK, Mejia EM, Vandel M et al (2016) Impaired cardiolipin biosynthesis prevents hepatic steatosis and diet-induced obesity. Diabetes 65:3289–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero-Reyes AM, Gupte AA, Youker KA et al (2014) Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 68:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cung TT, Morel O, Cayla G et al (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Czerski LW, Szweda PA, Szweda LI (2003) Dissociation of cytochrome c from the inner-mitochondrial membrane during cardiac ischemia. J Biol Chem 278:34499–34504

    Article  CAS  PubMed  Google Scholar 

  • Dabkowski ER, Williamson CL, Bukowski VC et al (2009) Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am J Physiol Heart Circ Physiol 296:H359–H369

    Article  CAS  PubMed  Google Scholar 

  • Dabkowski ER, Baseler WA, Williamson CL et al (2010) Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol 299:H529–H540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadabayev AR, Yin G, Latchoumycandane C et al (2014) Apolipoprotein A1 regulates coenzyme Q10 absorption, mitochondrial function, and infarct size in a mouse model of myocardial infarction. J Nutr 144:1030–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dally S, Monceau V, Corvazier E et al (2009) Compartmentalized expression of three novel sarco/endoplasmic reticulum Ca2+ATPase 3 isoforms including the switch to ER stress, SERCA3f, in non-failing and failing human heart. Cell Calcium 45:144–154

    Article  CAS  PubMed  Google Scholar 

  • Das A, Durrant D, Koka S et al (2014) Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem 289:4145–4160

    Article  CAS  PubMed  Google Scholar 

  • De Marchi E, Bonora M, Giorgi C et al (2014) The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56:1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolinsky VW, Cole LK, Sparagna GC et al (2016) Cardiac mitochondrial energy metabolism in heart failure: role of cardiolipin and sirtuins. Biochim Biophys Acta 1860:1544–1554

    Article  CAS  Google Scholar 

  • Dorn GW 2nd (2015) Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Mol Med 7:865–877

    Article  CAS  PubMed  Google Scholar 

  • Drose S, Stepanova A, Galkin A (2016) Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. Biochim Biophys Acta 1857:946–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dym O, Pratt EA, Ho C et al (2000) The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci U S A 97:9413–9418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elrod JW, Wong R, Mishra S et al (2010) Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang JK, Prabu SK, Sepuri NB et al (2007) Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion. FEBS Lett 581:1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fannin SW, Lesnefsky EJ, Slabe TJ et al (1999) Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys 372:399–407

    Article  CAS  PubMed  Google Scholar 

  • Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171:2080–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finichiu PG, Larsen DS, Evans C et al (2015) A mitochondria-targeted derivative of ascorbate: MitoC. Free Radic Biol Med 89:668–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folmes CD, Sawicki G, Cadete VJ et al (2010) Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury. Proteome Sci 8:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fridolfsson HN, Kawaraguchi Y, Ali SS et al (2012) Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB J 26:4637–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galkin A, Moncada S (2007) S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem 282:37448–37453

    Article  CAS  PubMed  Google Scholar 

  • Galkin A, Abramov AY, Frakich N et al (2009) Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J Biol Chem 284:36055–36061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez AS, Diwan A, Odley AM et al (2007) Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res 100:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Gille L, Nohl H (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys 388:34–38

    Article  CAS  PubMed  Google Scholar 

  • Goldenthal MJ (2016) Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev 21:137–155

    Article  CAS  PubMed  Google Scholar 

  • Goldstein MA, Schroeter JP, Michael LH (1991) Role of the Z band in the mechanical properties of the heart. FASEB J 5:2167–2174

    Article  CAS  PubMed  Google Scholar 

  • Gorenkova N, Robinson E, Grieve DJ et al (2013) Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia. Antioxid Redox Signal 19:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA et al (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Hafner AV, Dai J, Gomes AP et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2:914–923

    Article  CAS  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 61:372–385

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DJ (2013) Mechanisms of disease: is mitochondrial function altered in heart failure? Methodist Debakey Cardiovasc J 9:44–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Han D, Antunes F, Canali R et al (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35:339–341

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12:217–234

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75

    Article  CAS  PubMed  Google Scholar 

  • Heusch G, Musiolik J, Gedik N et al (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308

    Article  CAS  PubMed  Google Scholar 

  • Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 307:H1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppel CL, Tandler B, Parland W et al (1982) Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem 257:1540–1548

    CAS  PubMed  Google Scholar 

  • Hoppel CL, Tandler B, Fujioka H et al (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Zhou HJ, Zhang H et al (2015) Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 131:1082–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Powers C, Moore V et al (2017) The PPAR pan-agonist bezafibrate ameliorates cardiomyopathy in a mouse model of Barth syndrome. Orphanet J Rare Dis 12:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes BG, Fan X, Cho WJ et al (2014) MMP-2 is localized to the mitochondria-associated membrane of the heart. Am J Physiol Heart Circ Physiol 306:H764–H770

    Article  CAS  PubMed  Google Scholar 

  • Huttemann M, Lee I, Grossman LI et al (2012) Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. Adv Exp Med Biol 748:237–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Barba I, Hernando V et al (2008) Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Cardiovasc Res 77:782–790

    Article  CAS  PubMed  Google Scholar 

  • Jarreta D, Orus J, Barrientos A et al (2000) Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res 45:860–865

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang M, Howren M et al (2016) JPH-2 interacts with Cai-handling proteins and ion channels in dyads: contribution to premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 13:743–752

    Article  PubMed  Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY et al (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 37:1963–1985

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J et al (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Bayir HA, Belikova NA et al (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46:1439–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamanlidis G, Lee CF, Garcia-Menendez L et al (2013) Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 18:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486:1–17

    Article  CAS  PubMed  Google Scholar 

  • Knowlton AA, Chen L, Malik ZA (2014) Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol 63:196–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koka S, Aluri HS, Xi L et al (2014) Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1alpha signaling. Am J Physiol Heart Circ Physiol 306:H1558–H1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korytowski W, Basova LV, Pilat A et al (2011) Permeabilization of the mitochondrial outer membrane by Bax/truncated Bid (tBid) proteins as sensitized by cardiolipin hydroperoxide translocation: mechanistic implications for the intrinsic pathway of oxidative apoptosis. J Biol Chem 286:26334–26343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraljevic J, Marinovic J, Pravdic D et al (2013) Aerobic interval training attenuates remodelling and mitochondrial dysfunction in the post-infarction failing rat heart. Cardiovasc Res 99:55–64

    Article  CAS  PubMed  Google Scholar 

  • Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110:1646–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Zhang X, Lee Y et al (2013) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288:915–926

    Article  CAS  PubMed  Google Scholar 

  • Kukreja RC, Yin C, Salloum FN (2011) MicroRNAs: new players in cardiac injury and protection. Mol Pharmacol 80:558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Chen Q, Wolfram JA et al (2009) Cell cycle re-entry and mitochondrial defects in myc-mediated hypertrophic cardiomyopathy and heart failure. PLoS One 4:e7172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemieux H, Semsroth S, Antretter H et al (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–1738

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Hoppel CL (2006) Oxidative phosphorylation and aging. Ageing Res Rev 5:402–433

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Gallo DS, Ye J et al (1994) Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med 124:843–851

    CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Lundergan CF, Hodgson JM et al (1996) Increased left ventricular dysfunction in elderly patients despite successful thrombolysis: the GUSTO-I angiographic experience. J Am Coll Cardiol 28:331–337

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Tandler B, Ye J et al (1997) Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Phys 273:H1544–H1554

    CAS  Google Scholar 

  • Lesnefsky EJ, Gudz TI, Migita CT et al (2001a) Ischemic injury to mitochondrial electron transport in the aging heart: damage to the iron-sulfur protein subunit of electron transport complex III. Arch Biochem Biophys 385:117–128

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Moghaddas S, Tandler B et al (2001b) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Slabe TJ, Stoll MS et al (2001c) Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Phys 280:H2770–H2778

    CAS  Google Scholar 

  • Lesnefsky EJ, Chen Q, Moghaddas S et al (2004a) Blockade of electron transport during Ischemia protects cardiac mitochondria. J Biol Chem 279:47961–47967

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Chen Q, Slabe TJ et al (2004b) Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am J Physiol Heart Circ Physiol 287:H258–H267

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, He D, Moghaddas S et al (2006) Reversal of mitochondrial defects before ischemia protects the aged heart. FASEB J 20:1543–1545

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Chen Q, Hoppel CL (2016) Mitochondrial metabolism in aging heart. Circ Res 118:1593–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesnefsky EJ, Chen Q, Tandler B et al (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu X, Wang H et al (2012) Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proc Natl Acad Sci U S A 109:6975–6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Q, Kobayashi S (2016) Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol 95:57–69

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ye B, Miller S et al (2012) Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy. Mol Cell Biol 32:4493–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeffen JL, Smeitink JA, Trijbels JM et al (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat 15:123–134

    Article  CAS  PubMed  Google Scholar 

  • Lunkenheimer PP, Redmann K, Westermann P et al (2006) The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass. Eur J Cardiothorac Surg 29(Suppl 1):S41–S49

    Article  PubMed  Google Scholar 

  • Luongo TS, Lambert JP, Yuan A et al (2015) The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep 12:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning N, Albarran JW (2016) Low-dose intensive insulin therapy in patients with acute coronary syndrome accompanied by left ventricular failure: audit of two UK hospitals. J Clin Nurs 25:3001–3009

    Article  PubMed  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52:103–110

    Article  CAS  PubMed  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ, Damle S et al (2009) Regional distribution of mitochondrial dysfunction and apoptotic remodeling in pacing-induced heart failure. J Card Fail 15:700–708

    Article  CAS  PubMed  Google Scholar 

  • Mccully JD, Wakiyama H, Hsieh YJ et al (2004) Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 286:H1923–H1935

    Article  CAS  PubMed  Google Scholar 

  • Mccutcheon LJ, Cory CR, Nowack L et al (1992) Respiratory chain defect of myocardial mitochondria in idiopathic dilated cardiomyopathy of Doberman pinscher dogs. Can J Physiol Pharmacol 70:1529–1533

    Article  CAS  PubMed  Google Scholar 

  • Mentzer RM Jr, Wider J, Perry CN et al (2014) Reduction of infarct size by the therapeutic protein TAT-Ndi1 in vivo. J Cardiovasc Pharmacol Ther 19:315–320

    Article  CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 179:42–48

    Article  CAS  PubMed  Google Scholar 

  • Minamino T, Kitakaze M (2010) ER stress in cardiovascular disease. J Mol Cell Cardiol 48:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Miwa S, Brand MD (2003) Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans 31:1300–1301

    Article  CAS  PubMed  Google Scholar 

  • Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Aging defect at the Qo site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Arch Biochem Biophys 414:59–66

    Article  CAS  PubMed  Google Scholar 

  • Mohsin A, Chen Q, Quan N et al (2016) Cardioprotection during early reperfusion via complex I inhibition by metformin. Circulation 134:A19919. (abstract)

    Google Scholar 

  • Morel O, Perret T, Delarche N et al (2012) Pharmacological approaches to reperfusion therapy. Cardiovasc Res 94:246–252

    Article  CAS  PubMed  Google Scholar 

  • Mori J, Alrob OA, Wagg CS et al (2013) ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol 304:H1103–H1113

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2016) Understanding and preventing mitochondrial oxidative damage. Biochem Soc Trans 44:1219–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy E, Steenbergen C (2011) What makes the mitochondria a killer? Can we condition them to be less destructive? Biochim Biophys Acta 1813:1302–1308

    Article  CAS  PubMed  Google Scholar 

  • Nadtochiy SM, Burwell LS, Brookes PS (2007) Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 42:812–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer S (2007) The failing heart--an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  • Nishida K, Yamaguchi O, Otsu K (2015) Degradation systems in heart failure. J Mol Cell Cardiol 84:212–222

    Article  CAS  PubMed  Google Scholar 

  • Ockaili RA, Bhargava P, Kukreja RC (2001) Chemical preconditioning with 3-nitropropionic acid in hearts: role of mitochondrial K(ATP) channel. Am J Physiol Heart Circ Physiol 280:H2406–H2411

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi ST, Ohnishi T, Muranaka S et al (2005) A possible site of superoxide generation in the complex I segment of rat heart mitochondria. J Bioenerg Biomembr 37:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ozaki T, Tomita H, Tamai M et al (2007) Characteristics of mitochondrial calpains. J Biochem 142:365–376

    Article  CAS  PubMed  Google Scholar 

  • Paillard M, Tubbs E, Thiebaut PA et al (2013) Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128:1555–1565

    Article  CAS  PubMed  Google Scholar 

  • Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    CAS  PubMed  Google Scholar 

  • Palmer JW, Tandler B, Hoppel CL (1985) Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch Biochem Biophys 236:691–702

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Ryu SY, Sheu SS (2011) Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms. Sci China Life Sci 54:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchal AR, Stanley WC, Kerner J et al (1998) Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J Card Fail 4:121–126

    Article  CAS  PubMed  Google Scholar 

  • Papanicolaou KN, Khairallah RJ, Ngoh GA et al (2011) Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol 31:1309–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Trinity JD, Gifford JR et al (2016) Mitochondrial function in heart failure: The impact of ischemic and non-ischemic etiology. Int J Cardiol 220:711–717

    Article  PubMed  Google Scholar 

  • Pepe S, Mentzer RM Jr, Gottlieb RA (2014) Cell-permeable protein therapy for complex I dysfunction. J Bioenerg Biomembr 46:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoon CK, Acehan D, Schlame M et al (2012) Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. J Am Heart Assoc 1:ah3-e000455

    Article  CAS  Google Scholar 

  • Poncelas M, Inserte J, Aluja D et al (2017) Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodeling. Cardiovasc Res 113:950–961

    Article  PubMed  Google Scholar 

  • Riva A, Tandler B, Loffredo F et al (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:H868–H872

    Article  CAS  PubMed  Google Scholar 

  • Riva A, Tandler B, Lesnefsky EJ et al (2006) Structure of cristae in cardiac mitochondria of aged rat. Mech Ageing Dev 127:917–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosca MG, Vazquez EJ, Kerner J et al (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross T, Szczepanek K, Bowler E et al (2013) Reverse electron flow-mediated ROS generation in ischemia-damaged mitochondria: role of complex I inhibition vs. depolarization of inner mitochondrial membrane. Biochim Biophys Acta 1830:4537–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbah HN, Sharov V, Riddle JM et al (1992) Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 24:1333–1347

    Article  CAS  PubMed  Google Scholar 

  • Sanbe A, Tanonaka K, Kobayasi R et al (1995) Effects of long-term therapy with ACE inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol 27:2209–2222

    Article  CAS  PubMed  Google Scholar 

  • Santulli G, Xie W, Reiken SR et al (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 112:11389–11394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheubel RJ, Tostlebe M, Simm A et al (2002) Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol 40:2174–2181

    Article  CAS  PubMed  Google Scholar 

  • Schlame M (2013) Cardiolipin remodeling and the function of tafazzin. Biochim Biophys Acta 1831:582–588

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer M, Schrepper A, Amorim PA et al (2013) Pressure overload differentially affects respiratory capacity in interfibrillar and subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 304:H529–H537

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer M, Osterholt M, Lunkenbein A et al (2014) Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol 592:3767–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sciarretta S, Zhai P, Shao D et al (2013) Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2alpha/activating transcription factor 4 pathway. Circ Res 113:1253–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Kass DA (2014) Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res 115:79–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharov VG, Goussev A, Lesch M et al (1998) Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 30:1757–1762

    Article  CAS  PubMed  Google Scholar 

  • Sharov VG, Todor AV, Silverman N et al (2000) Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 32:2361–2367

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Pulliam DA, Liu Y et al (2013) Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus. Am J Physiol Regul Integr Comp Physiol 304:R343–R355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiva S, Sack MN, Greer JJ et al (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SS, Kang PM (2011) Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr Pharm Des 17:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Sparagna GC, Lesnefsky EJ (2009) Cardiolipin remodeling in the heart. J Cardiovasc Pharmacol 53:290–301

    Article  CAS  PubMed  Google Scholar 

  • Sparagna GC, Chicco AJ, Murphy RC et al (2007) Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res 48:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Stewart S, Lesnefsky EJ, Chen Q (2009) Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res 153:224–231

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ et al (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Sugden MC, Holness MJ (2006) Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem 112:139–149

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Trumpower BL (2003) Superoxide anion generation by the cytochrome bc1 complex. Arch Biochem Biophys 419:198–206

    Article  CAS  PubMed  Google Scholar 

  • Szczepanek K, Chen Q, Derecka M et al (2011) Mitochondrial-targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem 286:29610–29620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepanek K, Chen Q, Larner AC et al (2012a) Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion 12:180–189

    Article  CAS  PubMed  Google Scholar 

  • Szczepanek K, Lesnefsky EJ, Larner AC (2012b) Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends Cell Biol 22:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaki M, Zhao DD, Zhao LY et al (1995) Suppression of myocardial mitochondrial respiratory function in acute failing hearts made by a short-term Ca2+ free, high Ca2+ coronary perfusion. J Mol Cell Cardiol 27:2009–2013

    Article  CAS  PubMed  Google Scholar 

  • Taneike M, Mizote I, Morita T et al (2011) Calpain protects the heart from hemodynamic stress. J Biol Chem 286:32170–32177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J, Hu Y, Lesnefsky EJ et al (2016) Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release. Am J Physiol Heart Circ Physiol 310:H376–H384

    Article  PubMed  Google Scholar 

  • Tobiume K, Matsuzawa A, Takahashi T et al (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toldo S, Breckenridge DG, Mezzaroma E et al (2012) Inhibition of apoptosis signal-regulating kinase 1 reduces myocardial ischemia-reperfusion injury in the mouse. J Am Heart Assoc 1:e002360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toth A, Nickson P, Mandl A et al (2007) Endoplasmic reticulum stress as a novel therapeutic target in heart diseases. Cardiovasc Hematol Disord Drug Targets 7:205–218

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Ohga Y, Yoshikawa Y et al (2001) Rat cardiac contractile dysfunction induced by Ca2+ overload: possible link to the proteolysis of alpha-fodrin. Am J Physiol Heart Circ Physiol 281:H1286–H1294

    Article  CAS  PubMed  Google Scholar 

  • Van Der Vusse GJ, Van Bilsen M, Glatz JF et al (2002) Critical steps in cellular fatty acid uptake and utilization. Mol Cell Biochem 239:9–15

    Article  PubMed  Google Scholar 

  • Veitch K, Hombroeckx A, Caucheteux D et al (1992) Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage. Biochem J 281:709–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss JN, Korge P, Honda HM et al (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292–301

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Szczepanek K, Maceyka MW et al (2014) Transient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury. Am J Physiol Cell Physiol 306:C1142–C1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SW, Wang H, Poitras MF et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  CAS  PubMed  Google Scholar 

  • Zachman DK, Chicco AJ, Mccune SA et al (2010) The role of calcium-independent phospholipase A2 in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart. J Lipid Res 51:525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ren J (2011) Thapsigargin triggers cardiac contractile dysfunction via NADPH oxidase-mediated mitochondrial dysfunction: role of Akt dephosphorylation. Free Radic Biol Med 51:2172–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Hoppel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lesnefsky, E.J., Chen, Q., Tandler, B., Hoppel, C.L. (2018). Mitochondrial Disruption in Cardiovascular Diseases. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_12

Download citation

Publish with us

Policies and ethics