Skip to main content

Boron Isotopes in the Earth and Planetary Sciences—A Short History and Introduction

  • Chapter
  • First Online:
Boron Isotopes

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

This volume on boron isotope geochemistry contains chapters reviewing the low- and high-temperature geochemistry, marine chemistry, and cosmochemistry of boron isotopes. It covers theoretical aspects of B isotope fractionation, experiments and atomic modeling, as well as all aspects of boron isotope analyses in geologic materials by the full range of solution and in situ methods. The book provides guidance for researchers on the analytical and theoretical end, and introduces the various scientific applications and research fields in which boron isotopes play a growing role today. This chapter provides a brief history of boron isotope research and analytical development and provides an overview of the other chapters of the volume “Boron Isotopes—The Fifth Element” in the series Advancements in Isotope Geochemistry.

Me fifth element – supreme being. Me protect you.

Leeloo

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \( \delta^{11} {\text{B}} \) values are calculated from the reported \( ^{11} {\text{B}}/{^{10}} {\text{B}} \) ratios relative to the certified ratio of SRM951.

References

  • Abernathey RM (1960) Isotopic analysis of boron as trimethyl borate, vol 14503. U. S. Atomic Energy Commision, IDO, Idaho Falls, Idaho

    Book  Google Scholar 

  • Aggarwal SK, You CF (2016) A review on the determination of isotope ratios of boron with mass spectrometry. Mass Spectrom Rev 9999:1–21

    Google Scholar 

  • Aggarwal JK, Sheppard D, Mezger K, Pernicka E (2003) Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: origin of boron in the Ngawha geothermal system, New Zealand. Chem Geol 199:331–342

    Article  Google Scholar 

  • Aggarwal J, Böhm F, Foster G, Halas S, Hönisch B, Jiang SY, Košler J, Liba A, Rodushkin I, Sheehan T, Shen JJS, Tonarini S, Xie Q, You CF, Zhao ZQ, Zuleger E (2009) How well do non-traditional stable isotope results compare between different laboratories: results from interlaboratory comparison of boron isotope measurements. J Analyt Atom Spectrom 24:825–831

    Article  Google Scholar 

  • Agyei EK, McMullen CC (1968) A study of the isotopic abundance of boron from various sources. Can J Earth Sci 5:921–927

    Article  Google Scholar 

  • Al-Ammar AS, Reitznerová E, Barnes RM (2000) Improving boron isotope ratio measurement precision with quadropole inductively coupled plasma-mass spectrometry. Spectrochim Acta B 55:1861–1867

    Article  Google Scholar 

  • Altherr R, Topuz G, Marschall H, Zack T, Ludwig T (2004) Evolution of a tourmaline-bearing lawsonite eclogite from Elekdag area (Central Pontides, N Turkey): evidence for infiltration of slab-derived -rich fluids during exhumation. Contrib Mineral Petrol 148:409–425

    Article  Google Scholar 

  • Aston FW (1919) A positive ray spectrograph. Phil Mag 38:707–714

    Article  Google Scholar 

  • Aston FW (1920) The mass-spectra of chemical elements (Part 2.). Phil Mag 40:628–634

    Article  Google Scholar 

  • Aston FW (1927) Bakerian Lecture. A new mass-spectrograph and the whole number rule. Proc Royal Soc A 115:487–514

    Article  Google Scholar 

  • Aston FW (1931) The isotopic constitution and atomic weights of selenium, bromine, boron, tungsten, antimony, osmium, ruthenium, tellurium, germanium, rhenium and chlorine. Proc Royal Soc 132:487–498

    Article  Google Scholar 

  • Barth S (1998) 11B/10B variations of dissolved boron in a freshwater-seawater mixing plume (Elbe Estuary, North Sea). Marine Chem. 62:1–14

    Article  Google Scholar 

  • Baxter GP, Scott AF (1921) The atomic weight of boron. Science 54:524–525

    Article  Google Scholar 

  • Beams JW, Haynes FB (1936) The separation of isotopes by centrifuging. Phys Rev 50:491–492

    Article  Google Scholar 

  • Bentley PG (1960) Isotopic analysis of boron in boron trifluoride by mass spectrometery and measurement of natural boron 10 concentration. J Sci Instrum 37:323–328

    Article  Google Scholar 

  • Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem 86:425–467

    Article  Google Scholar 

  • Branson O (2017) Boron incorporation into marine CaCO3. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • Briscoe HVA, Robinson PL (1925) A redetermination of the atomic weight of boron. J Chem Soc Transact 127:696–720

    Article  Google Scholar 

  • Catanzaro EJ, Champion CE, Garner EL, Marinenko G, Sappenfield KM, Shields WR (1970) Boric acid: isotopic and assay standard reference materials. NBS (US) Spec Publ 260–17:1–71

    Google Scholar 

  • Chadwick J (1933) Bakerian Lecture. The neutron. Proc Royal Soc A 142:1–25

    Article  Google Scholar 

  • Chakraborty S, Dingwell DB, Chaussidon M (1993) Chemical diffusivity of boron in melts of haplogranitic composition. Geochim Cosmochim Acta 57:1741–1751

    Article  Google Scholar 

  • Chaussidon M, Albarède F (1992) Secular boron isotope variations in the continental crust: an ion microprobe study. Earth Planet Sci Lett 108:229–241

    Article  Google Scholar 

  • Chaussidon M, Jambon A (1994) Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet Sci Lett 121:277–291

    Article  Google Scholar 

  • Chaussidon M, Robert F (1995) Nucleosynthesis of 11B-rich boron in the pre-solar cloud recorded in meteoritic chondrules. Nature 374:337–339

    Article  Google Scholar 

  • Chaussidon M, Robert F, Mangin D, Hanon P, Rose EF (1997) Analytical procedures for the measurement of boron isotope composition by ion microprobe in meteorites and mantle rocks. Geostand Newsl 21:7–17

    Article  Google Scholar 

  • Christie WH, Eby RE, Warmack RJ, Landau L (1981) Determination of boron and lithium in nuclear materials by secondary ion mass spectrometry. Anal Chem 53:13–17

    Article  Google Scholar 

  • Conger AD (1953) The effect of boron enrichment on slow neutron-irradiated tissues. Genetics 38:128–133

    Google Scholar 

  • De Hoog CJ, Savov IP (2017) Subduction zones, dehydration, metasomatism, mud and serpentinite volcanoes, and arc magmatism. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol. 7. Springer, Heidelberg

    Google Scholar 

  • Dempster AJ (1918) A new method of positive ray analysis. Phys Rev 11:316–325

    Article  Google Scholar 

  • Duchateau NL, De Bièvre P (1983) Boron isotopic measurements by thermal ionization mass spetrometry using the negative BO2 ion. Internat. J. Mass Spectrom 54:289–297

    Article  Google Scholar 

  • Elliott A (1930a) Determination of the abundance ratios of isotopes from band spectra. Nature 126:845–846

    Article  Google Scholar 

  • Elliott A (1930b) Isotope effect in the spectrum of boron monoxide: intensity measurements and structure of the β-bands. Nature 126:203–204

    Article  Google Scholar 

  • Fietzke J, Heinemann A, Taubner I, Böhm F, Erez J, Eisenhauer A (2010) Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material. J Analyt Atom Spectrom 25:1953–1957

    Article  Google Scholar 

  • Finley HO, Eberle AR, Rodden CJ (1962) Isotopic boron composition of certain boron minerals. Geochim Cosmochim Acta 26:911–914

    Article  Google Scholar 

  • Foster GL (2008) Seawater pH, pCO2 and [CO3 2−] variations in the Caribbean Sea over the last 130kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet Sci Lett 271:254–266

    Article  Google Scholar 

  • Foster GL, Hönisch B, Paris G, Dwyer GS, Rae JWB, Elliott T, Gaillardet J, Hemming NG, Louvat P, Vengosh A (2013) Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem Geol 358:1–14

    Article  Google Scholar 

  • Foster GL, Lécuyer C, Marschall HR (2016) Boron stable isotopes. In: White WM (ed) Encyclopedia of geochemistry, encyclopedia earth science series. Springer, Berlin, pp 1–6

    Google Scholar 

  • Foster GL, Marschall HR, Palmer MR (2017) Boron isotope analysis of geologic materials. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • Gäbler HE, Bahr A (1999) Boron isotope ratio measurements with a double-focusing magnetic sector ICP mass spectrometer for tracing anthropogenic input into surface and ground water. Chem Geol 156:323–330

    Article  Google Scholar 

  • Gaillardet J, Lemarchand D (2017) Boron isotopes in riverine systems and the weathering environment. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, Advances in Isotope Geochemistry, vol. 7. Springer, Heidelberg

    Google Scholar 

  • Gensho R, Honda M (1971) Measurement of the isotopic ratio of boron. J Mass Spectrom Soc Japan 19:134–143. (Japanese with English abstract)

    Google Scholar 

  • Gonfiantini R, Tonarini S, Gröning M, Adorni-Braccesi A, Al-Ammar AS, Astner M, Bächler S, Barnes RM, Basset RL, Cocherie A, Deyhle A, Dini A, Ferrara G, Gaillardet J, Grimm J, Guerrot C, Krähenbühl U, Layne G, Lemarchand D, Meixner A, Northington DJ, Pennisi M, Reitznerová E, Rodushkin I, Sugiura N, Surberg R, Tonn S, Wiedenbeck M, Wunderli S, Xiao Y, Zack T (2003) Intercomparison of boron isotope and concentration measurements. Part II: evaluation of results. Geostand Newsl 27:41–57

    Article  Google Scholar 

  • Gounelle M, Chaussidon M, Rollion-Bard C (2013) Variable and extreme irradiation conditions in the early solar system inferred from the initial abundance of 10Be in Isheyevo CAIs. Astrophys J Lett 763:L33

    Article  Google Scholar 

  • Gregoire DC (1987) Determination of boron isotope ratios in geological materials by inductively coupled plasma mass spectrometry. Anal Chem 59:2479–2484

    Article  Google Scholar 

  • Grew ES, Anovitz LM (1996) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy, vol 33. Mineralogical Society of America, Washington, D.C., 864p

    Google Scholar 

  • Gurenko AA, Schmincke HU (2002) Orthopyroxene-bearing tholeiites of the Iblean Plateau (Sicily): constraints on magma origin and evolution from glass inclusions in olivine and orthopyroxene. Chem Geol 183:305–331

    Article  Google Scholar 

  • Hawthorne FC, Burns PC, Grice JD (1996) The crystal chemistry of boron. In: Grew E, LM A (eds) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy, vol 33. Mineralogical Society of America, Washington, D.C., pp 41–116

    Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543

    Article  Google Scholar 

  • Hemming NG, Reeder RJ, Hanson GN (1995) Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim Cosmochim Acta 59:371–379

    Article  Google Scholar 

  • Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR, Roggensack K (2002) Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am Mineral 87:769–774

    Article  Google Scholar 

  • Hönisch B, Hemming NG (2005) Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet Sci Lett 236:305–314

    Article  Google Scholar 

  • Hoppe P, Goswami JN, Krähenbühl U, Marti K (2001) Boron in chondrules. Meteor Planet Sci 36:1331–1343

    Article  Google Scholar 

  • Hou KJ, Li YH, Xiao YK, Liu F, Tian YR (2010) In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS. Chinese Sci Bull 55:3305–3311

    Article  Google Scholar 

  • Inghram MG (1946) The isotopic constitution of tungsten, silicon, and boron. Phys Rev 70:653–660

    Article  Google Scholar 

  • Ishikawa T, Nakamura E (1994) Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370:205–208

    Article  Google Scholar 

  • Jenkins FA, McKellar A (1932) Mass ratio of the boron isotopes from the spectrum of BO. Phys Rev 42:464–487

    Article  Google Scholar 

  • Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion exchange separation of boron isotopes. Bull Chem Soc Japan 50:158–163

    Article  Google Scholar 

  • Kasemann S, Meixner A, Rocholl A, Vennemann T, Rosner M, Schmitt AK, Wiedenbeck M (2001) Boron and oxygen isotopic composition of certified reference materials NIST SRM 610/612 and reference materials JB-2 and JR-2. Geostand Newsl 25:405–416

    Article  Google Scholar 

  • Kasemann SA, Schmidt DN, Bijma J, Foster GL (2009) In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH. Chem Geol 260:138–147

    Article  Google Scholar 

  • Klochko K, Kaufmann AJ, Yao W, Byrne RH, Tossell JA (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:276–285

    Article  Google Scholar 

  • Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161

    Article  Google Scholar 

  • Kowalski P, Wunder B (2017) Boron-isotope fractionation among solids-fluids-melts: experiments and atomic modeling. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • Kowalski PM, Wunder B, Jahn S (2013) Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim Cosmochim Acta 101:285–301

    Article  Google Scholar 

  • le Roux PJ, Shirey SB, Benton L, Hauri EH, Mock TD (2004) In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ 11B) at the nanogram level. Chem Geol 203:123–138

    Article  Google Scholar 

  • Lécuyer C, Grandjean P, Reynard B, Albarède F, Telouk P (2002) 11B10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55

    Article  Google Scholar 

  • Leeman WP, Sisson VB (1996) Geochemistry of boron and its implications for crustal and mantle processes. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy, Vol 33. Mineralogical Society of America, Washington, D.C., pp 645–695

    Google Scholar 

  • Lehmann WJ, Shapiro I (1959) Isotopic composition of boron and its atomic weight. Nature 183:1324

    Article  Google Scholar 

  • Lemarchand D, Schott J, Gaillardet J (2007) How surface complexes impact boron isotope fractionation: evidence from Fe and Mn oxides sorption experiments. Earth Planet Sci Lett 260:277–296

    Article  Google Scholar 

  • Liu MC, Chaussidon M (2017) The cosmochemistry of boron isotopes. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • MacPherson GJ, Huss GR, Davis AM (2003) Extinct 10Be in Type A calcium-aluminum-rich inclusions from CV chondrites. Geochim Cosmochim Acta 67:3165–3179

    Article  Google Scholar 

  • Marschall HR (2017) Boron isotopes in the ocean floor realm and the mantle. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliott T, Monteleone BD (2017) The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochimica et Cosmochimca Acta 207:102–138. doi:10.1016/j.gca.2017.03.028

    Google Scholar 

  • Martnez-Bot MA, Marino G, Foster GL, Ziveri P, Henehan MJ, Rae JWB, Mortyn PG, Vance D (2015) Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518:219–222

    Article  Google Scholar 

  • McCulloch MT, D’Olivio JP, Falter J, Georgiou L, Holcomb M, Montagna P, Trotter J (2017) Boron isotopes in corals. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • McKeegan KD, Chaussidon M, Robert F (2000) Incorporation of short-lived 10Be in a calciu-aluminium-rich inclusion from the Allende meteorite. Science 289:1334–1337

    Article  Google Scholar 

  • McMullen CC, Cragg CB, Thode HG (1961) Absolute ratio of 11B/10B in Searles Lake borax. Geochim Cosmochim Acta 23:147–150

    Google Scholar 

  • Nakano T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys Earth Planet Inter 127:233–252

    Article  Google Scholar 

  • Ornstein LS, Vreeswijk JA (1933) Messung des Intensitätsverhältnisses der Bor-Isotope B10 und B11. Zeitschr Phys 80:57–58

    Article  Google Scholar 

  • Osberghaus O (1950) Die Isotopenhäufigkeit des Bors. Massenspektrometrische Untersuchung der Elektronenstoßprodukte von BF3 und BCl3. Zeitschr Phys 128:366–377

    Article  Google Scholar 

  • Palmer MR, Swihart GH (1996) Boron isotope geochemistry: an overview. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry, Reviews in Mineralogy, 1st edn, Vol 33. Mineralogical Society of America, Washington, DC, pp 709–740

    Google Scholar 

  • Parwel A, von Ubisch H, Wickman FE (1956) On the variations in the relative abundance of boron isotopes in nature. Geochim Cosmochim Acta 10:185–190

    Article  Google Scholar 

  • Peacock SM, Hervig RL (1999) Boron isotopic composition of subduction-zone metamorphic rocks. Chem Geol 160:281–290

    Article  Google Scholar 

  • Phinney D, Whitehead B, Anderson D (1979) Li, Be, and B in minerals of a refractory-rich Allende inclusion. In: Proceedings 10th Lunar and Planetary Science Conference, pp 885–905

    Google Scholar 

  • Porteous NC, Walsh JN, Jarvis KE (1995) Measurement of boron isotope ratios in groundwater studies. Analyst 120:1397–1400

    Article  Google Scholar 

  • Rae JWB (2017) Boron isotopes in foraminfera. In: Marschall HR, Foster GL (eds) Boron isotopes—the fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • Ramakumar KL, Parab AR, Khodade PS, Almaula AI, Chitambar SA, Jain HJ (1985) Determination of isotopic composition of boron. Radioanal Nucl Chem Lett 94:53–62

    Article  Google Scholar 

  • Rose E, Shimizu N, Layne G, Grove TL (2001) Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science 293:281–283

    Article  Google Scholar 

  • Rosner M, Meixner A (2004) Boron isotopic composition and concentration of ten geological reference materials. Geostand Geoanal Res 28:431–441

    Article  Google Scholar 

  • Rustad JR, Bylaska EJ (2007) Ab initio calculation of isotopic fractionation in BH(OH)3(aq) and BHOH4 (aq). J Am Chem Soc 129:2222–2223

    Article  Google Scholar 

  • Sanyal A, Nugent M, Reeder RJ, Bijma J (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64:1551–1555

    Article  Google Scholar 

  • Scambelluri M, Tonarini S (2012) Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40:907–910

    Article  Google Scholar 

  • Sears VF (1992) Neutron scattering lengths and cross sections. Neutr News 3:26–37

    Article  Google Scholar 

  • Shima M (1962) Boron in Meteorites. J Geophys Res 67:4521–4523

    Article  Google Scholar 

  • Shima M (1963) Geochemical study of boron isotopes. Geochim Cosmochim Acta 27:911–913

    Article  Google Scholar 

  • Shimizu N, Hart SR (1982) Isotope fractionation in secondary ion mass spectometry. J Appl Phys 53:1303–1311

    Article  Google Scholar 

  • Smith MP, Yardley BWD (1996) The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: an ion microprobe study. Geochim Cosmochim Acta 60:1415–1427

    Article  Google Scholar 

  • Spivack AJ, Edmond JM (1986) Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal Chem 58:31–35

    Article  Google Scholar 

  • Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmochim Acta 51:1033–1043

    Article  Google Scholar 

  • Sugiura N, Shuzou Y, Ulyanov A (2001) Beryllium-boron and aluminium-magnesium chronology of calcium-aluminium-rich inclusions in CV chondrites. Meteor Planet Sci 36:1397–1408

    Article  Google Scholar 

  • Thode HG, Macnamara J, Lossing FP, Collins CB (1948) Natural variations in the isotopic content of boron and its chemical atomic weight. J Am Chem Soc 70:3008–3011

    Article  Google Scholar 

  • Thomson JJ (1913) Bakterian Lecture: rays of positive electricity. Proc Royal Soc A 89:1–20

    Article  Google Scholar 

  • Tiepolo M, Bouman C, Vannucci R, Schwieters J (2006) Laser ablation multicollector ICP-MS determination of δ 11B in geological samples. Appl Geochem 21:788–801

    Article  Google Scholar 

  • Tonarini S, Pennisi M, Adorno-Braccesi A, Dini A, Ferrara G, Gonfiantini R, Wiedenbeck M, Gröning M (2003) Intercomparison of boron isotope and concentration measurements. Part I: selection, preparation and homogeneity tests of the intercomparison materials. Geostand Newsl 27:21–39

    Article  Google Scholar 

  • Trumbull RB, Slack JF (2017) Continental crust, granites, pegmatites, high-T crustal metamorphism, and ore deposits. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • Urey HC, Greiff LJ (1935) Isotopic exchange equilibria. J Am Chem Soc 57:321–327

    Article  Google Scholar 

  • Williams LB, Hervig RL (2005) Lithium and boron isotopes in illite-smectite: the importance of crystal size. Geochim Cosmochim Acta 69:5705–5716

    Article  Google Scholar 

  • Williams LB, Hervig RL, Holloway JR, Hutcheon I (2001) B isotope geochemistry during diagenesis. Part I. Experimental determination of fractionation during illitization of smectite. Geochim Cosmochim Acta 65:1769–1782

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005) The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84:206–216

    Article  Google Scholar 

  • Yates EL (1938) The separation of isotopes for the investigation of nuclear transmutations. Proc Royal Soc 168:148–158

    Article  Google Scholar 

  • You CF (2004) Thermal ionization mass spectrometry techniques for boron isotopic analysis: a review. In: de Groot PA (ed) Handbook of Stable Isotope Analytical Techniques, vol 1. Elsevier, Amsterdam, pp 142–152

    Google Scholar 

  • Zahl PA, Cooper FS (1941) Physical and biological considerations in the use of slow neutrons for cancer therapy. Radiology 37:673–682

    Article  Google Scholar 

  • Zeininger H, Heumann KG (1983) Boron isotope ratio measurements by negative ionization mass spectrometry. Internat J Mass Spectrom 48:377–380

    Google Scholar 

Download references

Acknowledgements

We would like to thank series editor Jochen Hoefs for inviting us to contribute this volume on boron isotopes to the Springer series Advances in Isotope Geochemistry. We are also grateful to Springer editors Annett Büttner and Chris Bendall for their support at various stages of the project. James Rae is thanked for editorial handling of Chaps. 1 and 2. Preparation of this review chapter was financially supported by a WHOI Independent Study Award from the Andrew W. Mellon Foundation to HRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst R. Marschall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marschall, H.R., Foster, G.L. (2018). Boron Isotopes in the Earth and Planetary Sciences—A Short History and Introduction. In: Marschall, H., Foster, G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-64666-4_1

Download citation

Publish with us

Policies and ethics