Skip to main content

New Method of Obtaining the Kochen-Specker Theorem

  • Chapter
  • First Online:
Quantum Computing:An Environment for Intelligent Large Scale Real Application

Part of the book series: Studies in Big Data ((SBD,volume 33))

  • 1919 Accesses

Abstract

We derive a new type of no-hidden-variable theorem based on the assumptions proposed by Kochen and Specker. We consider N spin-1/2 systems. The hidden results of measurement are either \(+1\) or \(-1\) (in \(\hbar /2\) unit). We derive some proposition concerning a quantum expected value under an assumption about the existence of the Bloch sphere in N spin-1/2 systems. However, the hidden variables theory violates the proposition with a magnitude that grows exponentially with the number of particles. Therefore, we have to give up either the existence of the Bloch sphere or the hidden variables theory. Also we discuss a two-dimensional no-hidden-variables theorem of the KS type. Especially, we systematically describe our assertion based on more mathematical analysis using raw data in a thoughtful experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakurai, J.J.: Modern Quantum Mechanics. Revised ed. Addison-Wesley Publishing Company (1995)

    Google Scholar 

  2. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht, The Netherlands (1993)

    MATH  Google Scholar 

  3. Redhead, M.: Incompleteness, Nonlocality, and Realism. 2nd ed. Clarendon Press, Oxford (1989)

    Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  5. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, New Jersey (1955)

    MATH  Google Scholar 

  6. Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on Physics, Volume III, Quantum mechanics. Addison-Wesley Publishing Company (1965)

    Google Scholar 

  7. Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967)

    MathSciNet  Google Scholar 

  8. Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer Academic, Dordrecht, The Netherlands (1989)

    Google Scholar 

  9. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Am. J. Phys. 58, 1131 (1990)

    Article  Google Scholar 

  10. Pagonis, C., Redhead, M.L.G., Clifton, R.K.: Phys. Lett. A 155, 441 (1991)

    Article  MathSciNet  Google Scholar 

  11. Mermin, N.D.: Phys. Today 43(6), 9 (1990)

    Article  Google Scholar 

  12. Mermin, N.D.: Am. J. Phys. 58, 731 (1990)

    Article  Google Scholar 

  13. Peres, A.: Phys. Lett. A 151, 107 (1990)

    Article  MathSciNet  Google Scholar 

  14. Mermin, N.D.: Phys. Rev. Lett. 65, 3373 (1990)

    Article  MathSciNet  Google Scholar 

  15. Simon, C., Brukner, Č., Zeilinger, A.: Phys. Rev. Lett. 86, 4427 (2001)

    Article  Google Scholar 

  16. Larsson, J.Ã….: Europhys. Lett. 58, 799 (2002)

    Article  Google Scholar 

  17. Cabello, A.: Phys. Rev. A 65, 052101 (2002)

    Article  MathSciNet  Google Scholar 

  18. Nagata, K.: J. Math. Phys. 46, 102101 (2005)

    Article  MathSciNet  Google Scholar 

  19. Huang, Y.-F., Li, C.-F., Zhang, Y.-S., Pan, J.-W., Guo, G.-C.: Phys. Rev. Lett. 90, 250401 (2003)

    Google Scholar 

  20. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  Google Scholar 

  21. Leggett, A.J.: Found. Phys. 33, 1469 (2003)

    Article  MathSciNet  Google Scholar 

  22. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Nature (London) 446, 871 (2007)

    Article  Google Scholar 

  23. Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Phys. Rev. Lett. 99, 210406 (2007)

    Article  Google Scholar 

  24. Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Scarani, V.: Phys. Rev. Lett. 99, 210407 (2007)

    Article  Google Scholar 

  25. Suarez, A.: Found. Phys. 38, 583 (2008)

    Article  Google Scholar 

  26. Żukowski, M.: Found. Phys. 38, 1070 (2008)

    Article  Google Scholar 

  27. Suarez, A.: Found. Phys. 39, 156 (2009)

    Article  MathSciNet  Google Scholar 

  28. Deutsch, D.: Proc. Roy. Soc. London Ser. A 400, 97 (1985)

    Article  MathSciNet  Google Scholar 

  29. Deutsch, D., Jozsa, R.: Proc. Roy. Soc. London Ser. A 439, 553 (1992)

    Article  MathSciNet  Google Scholar 

  30. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Proc. Roy. Soc. London Ser. A 454, 339 (1998)

    Article  Google Scholar 

  31. Jones, J.A., Mosca, M.: J. Chem. Phys. 109, 1648 (1998)

    Article  Google Scholar 

  32. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Nature (London) 421, 48 (2003)

    Article  Google Scholar 

  33. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)

    Article  Google Scholar 

  34. Kim, Y.-H.: Phys. Rev. A 67, 040301(R) (2003)

    Article  MathSciNet  Google Scholar 

  35. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)

    Article  Google Scholar 

  36. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Phys. Rev. Lett. 98, 140501 (2007)

    Article  MathSciNet  Google Scholar 

  37. Bernstein, E., Vazirani, U.: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp. 11–20 (1993). doi:10.1145/167088.167097; SIAM J. Comput. 26–5, pp. 1411–1473 (1997)

  38. Simon, D.R.: Foundations of Computer Science. In: Proceedings of the 35th Annual Symposium on: 116-123, retrieved 2011-06-06 (1994)

    Google Scholar 

  39. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Phys. Rev. A 64, 042306 (2001)

    Article  Google Scholar 

  40. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P., Haelterman, M., Massar, S.: Phys. Rev. Lett. 90, 157902 (2003)

    Article  MathSciNet  Google Scholar 

  41. Li, H., Yang, L.: Quantum Inf. Process. 14, 1787 (2015)

    Article  MathSciNet  Google Scholar 

  42. De Broglie-Bohm theory—Wikipedia, the free encyclopedia

    Google Scholar 

  43. Schon, C., Beige, A.: Phys. Rev. A 64, 023806 (2001)

    Article  Google Scholar 

  44. Nagata, K., Nakamura, T.: Physics Journal 1(3), 183 (2015)

    Google Scholar 

  45. In probability theory, the law of large numbers is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed. The strong law of large numbers states that the sample average converges almost surely to the expected value

    Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Niizeki and Dr. Ren for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nagata, K., Nakamura, T., Farouk, A. (2018). New Method of Obtaining the Kochen-Specker Theorem. In: Hassanien, A., Elhoseny, M., Kacprzyk, J. (eds) Quantum Computing:An Environment for Intelligent Large Scale Real Application . Studies in Big Data, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-63639-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63639-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63638-2

  • Online ISBN: 978-3-319-63639-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics