Skip to main content

Planetary Mapping for Landing Sites Selection: The Mars Case Study

  • Chapter
  • First Online:
Planetary Cartography and GIS

Abstract

The selection of a landing site on a planetary body is a multistep process that involves both the fulfillment of several engineering constraints and the accomplishment of scientific requirements. In this chapter, we will show how the simultaneous production and exploitation of different GIS maps depicting these criteria are pivotal in the landing site selection. Indeed, all of such constraints are presently evaluated through the use of GIS-based software. To show this, we will focus on the Martian site identification outline, providing multiple real examples taken from two ongoing study cases, i.e., the Simud Vallis landing site proposed by Pajola et al. (Icarus 268:355–381, 2016a) for the ESA ExoMars rover and the Eridania landing site proposed by Pajola et al. (Icarus 275:163–182, 2016b) for the NASA Mars 2020 landing site selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burrough PA, McDonnell RA (1998) Principles of Geographical Information Systems. Oxford University Press, New York

    Google Scholar 

  • Christensen PR (1986a) The spatial distribution of rocks on mars. Icarus 68:217–238

    Article  Google Scholar 

  • Christensen PR (1986b) Regional dust deposits on mars. J Geophys Res 91(B3):3533–3545

    Google Scholar 

  • Christensen PR et al (1992) Thermal emission spectrometer experiment: the mars observer mission. J Geophys Res 97:7719–7734

    Article  Google Scholar 

  • Christensen PR et al (2001) Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J Geophys Res 106(E10):23823–23871

    Article  Google Scholar 

  • Conrath BJ et al (2000) Mars global surveyor thermal emission spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing. J Geophys Res 105(E4):9509–9519

    Article  Google Scholar 

  • ESA (2014). http://exploration.esa.int/mars/53462-call-for-exomars-2018-landing-site-selection/

  • Golombek MP, Rapp D (1997) Size-frequency distributions of rocks on mars and earth analog sites: implications for future landed missions. J Geophys Res 102(E2):4117–4129

    Article  Google Scholar 

  • Golombek MP et al (2003) Rock size-frequency distributions on Mars and implications for Mars exploration rover landing safety and operations. J Geophys Res 108(E12):8086

    Google Scholar 

  • Golombek MP et al (2005) assessment of Mars exploration rover landing site predictions. Nature 436:44–48

    Article  Google Scholar 

  • Golombek MP et al (2008) Size-frequency distributions of rocks on the northern plains of mars with special reference to Phoenix landing surfaces. J Geophys Res 113 (E00A09)

    Google Scholar 

  • Golombek M et al (2012) Selection of the mars science laboratory landing site. Space Sci Rev 170(1–4):641–737

    Article  Google Scholar 

  • Greeley R et al (2008) Columbia hills, mars: aeolian features seen from the ground and orbit. J Geophys Res 113

    Google Scholar 

  • Haberle RM et al (1999) General circulation model simulations of the mars pathfinder atmospheric structure investigation/meteorology data. J Geophys Res 104:8957–8974

    Article  Google Scholar 

  • Haberle RM et al (2014) Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J Geophys Res Planets 119:440–453

    Article  Google Scholar 

  • Hollingsworth JL Kahre MA (2010) Extratropical cyclones, frontal waves, and mars dust: modeling and considerations. Geophys Res Lett 37

    Article  Google Scholar 

  • Irwin RP et al (2002) A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296(5576):2209–2212

    Article  Google Scholar 

  • Kass DM et al (2003) Analysis of atmospheric mesoscale models for entry, descent, and landing. J Geophys Res 108:8090

    Article  Google Scholar 

  • Kahre MA (2006) Modeling the martian dust cycle and surface dust reservoirs with the NASA ames general circulation model. J Geophys Res 111

    Google Scholar 

  • Kahre MA (2015) Coupling the mars dust and water cycles: the importance of radiative-dynamic feedbacks during northern hemisphere summer. Icarus 260:477–480

    Article  Google Scholar 

  • Kereszturi A (2012) Landing site rationality scaling for subsurface sampling on mars—case study for exomars rover-like missions. Planet Space Sci 72:78–90

    Article  Google Scholar 

  • Kereszturi A, Bradak B, Chatzitheodoridis E, Ujvari G (2016) Indicators and methods to understand past environments from exomars rover drills. Orig Life Evol Biosph 46:435–454

    Article  Google Scholar 

  • Mackwell et al (2013) Comparative climatology of terrestrial planets. University of Arizona Press, pp 55–89

    Google Scholar 

  • McEwen AS et al (2007) Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J Geophys Res 112:E05S02


    Google Scholar 

  • Moore HJ, Jakosky BM (1989) Viking landing sites, remote-sensing observations, and physical properties of martian surface materials. Icarus 81(1):164–184

    Article  Google Scholar 

  • Mouginot J et al (2010) The 3–5 MHz global reflectivity map of mars by MARSIS/Mars express: implications for the current inventory of subsurface H2O. Icarus 210(2):612–625


    Article  Google Scholar 

  • Murchie S et al (2007) Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J Geophys Res 112:E05S03

    Google Scholar 

  • Mustard JF, Beaty D, Bass D (2013) Mars 2020 science rover: science goals and mission concept. In: American astronomical society, DPS meeting No. 45, No. 211.17


    Google Scholar 

  • Nowicki SA, Christensen PR (2007) Rock abundance on Mars from the thermal emission spectrometer. J Geophys Res 112:E05007

    Article  Google Scholar 

  • Pajola M et al (2016a) The Simud-Tiu valles hydrologic system: a multidisciplinary study of a possible site for future Mars on-site exploration. Icarus 268:355–381

    Article  Google Scholar 

  • Pajola M et al (2016b) Eridania basin: an ancient paleolake floor as the next landing site for the Mars 2020 rover. Icarus 275:163–182

    Article  Google Scholar 

  • Pajola M et al (2017) Boulder abundances and size-frequency distributions on oxia Planum-Mars: scientific implications for the 2020 ESA ExoMars rover. Icarus 296:73–90

    Article  Google Scholar 

  • Putzig NE, Mellon MT (2007) Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191:68–94


    Article  Google Scholar 

  • Putzig NE et al (2005) Global thermal inertia and surface properties of mars from the MGS mapping mission. Icarus 173:325–341


    Article  Google Scholar 

  • Quantin C, Carter J, Thollot P et al (2016) Oxia planum, the landing site for exomars 2018. In: 47th lunar and planetary science conference 2016

    Google Scholar 

  • Rafkin SCR, Michaels TI (2003) Meteorological predictions for 2003 Mars exploration rover high-priority landing sites. J Geophys Res 108(E12):809

    Article  Google Scholar 

  • Rafkin SCR, Haberle RM, Michaels TI (2001) The mars regional atmospheric modeling system: model description and selected simulations. Icarus 151:228–256

    Article  Google Scholar 

  • Ruff SW, Christensen PR (2002) Bright and dark regions on Mars: particle size and mineralogical characteristics based on thermal emission spectrometer data. J Geophys Res 107(E12):5119

    Article  Google Scholar 

  • Showman AP (2002) Planetary atmospheres: Mars Encyclopedia of Atmospheric Sciences. Academic Press, pp 1745–1755

    Google Scholar 

  • Smith DE et al (2001) Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J Geophys Res 106(E10):23689–23722

    Article  Google Scholar 

  • Tellmann S et al (2013) The structure of mars lower atmosphere from mars express radio science (MaRS) occultation measurements. J Geophys Res Planets 118:306–320

    Article  Google Scholar 

  • Vasavada AR et al (2012) Assessment of environments for Mars science laboratory entry descent, and surface operation. Space Sci Rev 170:793

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Henrik Hargitai and an anonymous reviewer for important comments and suggestions that highly improved the book’s chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Pajola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pajola, M., Rossato, S., Baratti, E., Kling, A. (2019). Planetary Mapping for Landing Sites Selection: The Mars Case Study. In: Hargitai, H. (eds) Planetary Cartography and GIS. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-62849-3_7

Download citation

Publish with us

Policies and ethics