Skip to main content

Trials of Angiogenesis Therapy in Patients with Ischemic Heart Disease

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Abstract

Therapeutic angiogenesis is a novel method to create endogenous bypass conduits around the occluded coronary arteries. After the success in animal studies, therapeutic angiogenesis has been studied in humans with ischemic heart disease not responding to (or in addition to) conventional treatments. The most commonly studied angiogenic cytokines are vascular endothelial growth factor, fibroblast growth factor and granulocyte colony stimulating factor. Delivery as a protein, or vector with gene encoding for specific protein have been tested in clinical trials. These cytokines, using a multitude of delivery routes ranging from direct intramyocardial transfer either from epicardial or endocardial side, intracoronary infusion, systemic administration via subcutaneous route, have been introduced to myocardial tissues. Small sample size phase I studies have shown promising results. But large sample size, controlled studies have failed to demonstrate any significant improvement in various clinical, radiographic and angiographic outcomes in ischemic heart disease patients. Angiogenesis is influenced by a multitude of variables including duration of exposure, type of vector and need for co-factor. They also vary based on the individual patient characteristics. Further studies accounting for these variables are needed to fully determine the potential of therapeutic angiogenesis in ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seiler C, Stoller M, Pitt B, Meier P (2013) The human coronary collateral circulation: development and clinical importance. Eur Heart J [Internet] 34(34):2674. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23739241

    Article  CAS  Google Scholar 

  2. Möbius-Winkler S, Uhlemann M, Adams V, Sandri M, Erbs S, Lenk K, Mangner N, Mueller U, Adam J, Grunze M, Brunner S, Hilberg T, Mende M, Linke A, Schuler G (2016) Coronary collateral growth induced by physical exercise: results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) trial. Circulation [Internet] 133(15):1438–1448. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-201604120-00004

    Article  Google Scholar 

  3. Nathoe HM, Koerselman J, Buskens E, van Dijk D, Stella PR, Plokker THW, Doevendans PAFM, Grobbee DE, de Jaegere PPT (2006) Determinants and prognostic significance of collaterals in patients undergoing coronary revascularization. Am J Cardiol [Internet] 98(1):31–35, [cited Nov 19, 2016]

    Article  Google Scholar 

  4. Schumacher B, Pecher P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation [Internet] 97(7):645–650, [cited Nov 19, 2016]

    Article  CAS  Google Scholar 

  5. Sellke FW, Laham RJ, Edelman ER, Pearlman JD, Simons M (1998) Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thorac Surg [Internet] 65(6):1540–1544, [cited Nov 20, 2016]

    Article  CAS  Google Scholar 

  6. Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation [Internet] 100(18):1865–1871, [cited Nov 20, 2016]

    Article  CAS  Google Scholar 

  7. Unger EF, Goncalves L, Epstein SE, Chew EY, Trapnell CB, Cannon RO, Quyyumi AA (2000) Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol [Internet] 85(12):1414–1419, [cited Nov 20, 2016]

    Article  CAS  Google Scholar 

  8. Laham RJ, Chronos NA, Pike M, Leimbach ME, Udelson JE, Pearlman JD, Pettigrew RI, Whitehouse MJ, Yoshizawa C, Simons M (2000) Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol [Internet] 36(7):2132–2139, [cited Nov 21, 2016]

    Article  CAS  Google Scholar 

  9. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation [Internet] 105(7):788–793, [cited Nov 23, 2016]

    Article  CAS  Google Scholar 

  10. Jang E, Albadawi H, Watkins MT, Edelman ER, Baker AB (2012) Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle. Proc Natl Acad Sci U S A [Internet] 109(5):1679–1684, [cited Nov 23, 2016]

    Article  CAS  Google Scholar 

  11. Kim JH, Jung Y, Kim S, Sun K, Choi J, Kim HC, Park Y, Kim SH (2011) The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials [Internet] 32(26):6080–6088, [cited Nov 23, 2016]

    Article  CAS  Google Scholar 

  12. Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO (2000) Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation [Internet] 101(2):118–121, [cited Nov 23, 2016]

    Article  CAS  Google Scholar 

  13. Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Losordo DW, Hendel RC, Bonow RO, Eppler SM, Zioncheck TF, Holmgren EB, McCluskey ER (2001) Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J [Internet] 142(5):872–880, [cited Nov 23, 2016]

    Article  CAS  Google Scholar 

  14. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, ER MC (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation [Internet] 107(10):1359–1365, [cited Nov 23, 2016]

    Article  CAS  Google Scholar 

  15. Kuethe F, Figulla HR, Herzau M, Voth M, Fritzenwanger M, Opfermann T, Pachmann K, Krack A, Sayer HG, Gottschild D, Werner GS (2005) Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J [Internet] 150(1):115, [cited Nov 25, 2016]

    Article  CAS  Google Scholar 

  16. Seiler C, Pohl T, Wustmann K, Hutter D, Nicolet PA, Windecker S, Eberli FR, Meier B (2001) Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation [Internet] 104(17):2012–2017, [cited Nov 28, 2016]

    Article  CAS  Google Scholar 

  17. Zbinden S, Zbinden R, Meier P, Windecker S, Seiler C (2005) Safety and efficacy of subcutaneous-only granulocyte-macrophage colony-stimulating factor for collateral growth promotion in patients with coronary artery disease. J Am Coll Cardiol [Internet] 46(9):1636–1642, [cited Nov 28, 2016]

    Article  CAS  Google Scholar 

  18. Valgimigli M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percoco G, Bugli AM, Della Porta M, Bragotti LZ, Ansani L, Mauro E, Lanfranchi A, Giganti M, Feggi L, Castoldi G, Ferrari R (2005) Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J [Internet] 26(18):1838–1845, [cited Nov 25, 2016]

    Article  CAS  Google Scholar 

  19. Zohlnhöfer D, Ott I, Mehilli J, Schömig K, Michalk F, Ibrahim T, Meisetschläger G, von Wedel J, Bollwein H, Seyfarth M, Dirschinger J, Schmitt C, Schwaiger M, Kastrati A, Schömig A (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA [Internet] 295(9):1003–1010, [cited Nov 29, 2016]

    Article  Google Scholar 

  20. Ellis SG, Penn MS, Bolwell B, Garcia M, Chacko M, Wang T, Brezina KJ, McConnell G, Topol EJ (2006) Granulocyte colony stimulating factor in patients with large acute myocardial infarction: results of a pilot dose-escalation randomized trial. Am Heart J [Internet] 152(6):14, [cited Nov 25, 2016]

    Google Scholar 

  21. Kang H, Kim H, Koo B, Kim Y, Lee D, Sohn D, Oh B, Park Y (2007) Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year follow-up results of the myocardial regeneration and angiogenesis in myocardial infarction with G-CSF and intra-coronary stem cell infusion (MAGIC cell) 1 trial. Am Heart J [Internet] 153(2):8, [cited Nov 25, 2016]

    Google Scholar 

  22. Kang H, Kim H, Zhang S, Park K, Cho H, Koo B, Kim Y, Soo Lee D, Sohn D, Han K, Oh B, Lee M, Park Y (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet [Internet] 363(9411):751–756, [cited Nov 25, 2016]

    Article  CAS  Google Scholar 

  23. Engelmann MG, Theiss HD, Hennig-Theiss C, Huber A, Wintersperger BJ, Werle-Ruedinger A, Schoenberg SO, Steinbeck G, Franz W (2006) Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: Final results from the G-CSF-STEMI (granulocyte colony-stimulating factor ST-segment elevation myocardial infarction) trial. J Am Coll Cardiol [Internet] 48(8):1712–1721

    Article  CAS  Google Scholar 

  24. Engelmann MG, Theiss HD, Theiss C, Henschel V, Huber A, Wintersperger BJ, Schoenberg SO, Steinbeck G, Franz W (2010) G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: Final 1-year-results of the G-CSF-STEMI trial. Int J Cardiol [Internet] 144(3):399–404, [cited Nov 25, 2016]

    Article  Google Scholar 

  25. Ince H, Petzsch M, Kleine HD, Schmidt H, Rehders T, Körber T, Schümichen C, Freund M, Nienaber CA (2005) Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation [Internet] 112(20):3097–3106, [cited Nov 25, 2016]

    Article  CAS  Google Scholar 

  26. Achilli F, Malafronte C, Lenatti L, Gentile F, Dadone V, Gibelli G, Maggiolini S, Squadroni L, Di Leo C, Burba I, Pesce M, Mircoli L, Capogrossi MC, Di Lelio A, Camisasca P, Morabito A, Colombo G, Pompilio G (2010) Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the single-blind, randomized, placebo-controlled multicentre STem cEll mobilization in acute myocardial infarction (STEM-AMI) trial. Eur J Heart Fail [Internet] 12(10):1111–1121, [cited Nov 27, 2016]

    Article  CAS  Google Scholar 

  27. Achilli F, Malafronte C, Maggiolini S, Lenatti L, Squadroni L, Gibelli G, Capogrossi MC, Dadone V, Gentile F, Bassetti B, Di Gennaro F, Camisasca P, Calchera I, Valagussa L, Colombo GI, Pompilio G (2014) G-CSF treatment for STEMI: Final 3-year follow-up of the randomised placebo-controlled STEM-AMI trial. Heart (British Cardiac Society) [Internet] 100(7):574–581. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24415665

    CAS  Google Scholar 

  28. Kang H, Lee H, Na S, Chang S, Park K, Kim H, Kim S, Chang H, Lee W, Kang WJ, Koo B, Kim Y, Lee DS, Sohn D, Han K, Oh B, Park Y, Kim H (2006) Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC cell-3-DES randomized, controlled trial. Circulation [Internet] 114(1 Suppl):145, [cited Nov 25, 2016]

    Google Scholar 

  29. Kang H, Kim M, Lee H, Park K, Lee W, Cho Y, Koo B, Choi D, Park Y, Kim H (2012) Five-year results of intracoronary infusion of the mobilized peripheral blood stem cells by granulocyte colony-stimulating factor in patients with myocardial infarction. European Heart Journal [Internet] 33(24):3062. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22904565

    Article  Google Scholar 

  30. Chih S, Macdonald PS, McCrohon JA, Ma D, Moore J, Feneley MP, Law M, Kovacic JC, Graham RM (2012) Granulocyte colony stimulating factor in chronic angina to stimulate neovascularisation: a placebo controlled crossover trial. Heart (British Cardiac Society) [Internet] 98(4):282–290. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22115984

    Google Scholar 

  31. Hibbert B, Hayley B, Beanlands RS, Le May M, Davies R, So D, Marquis J, Labinaz M, Froeschl M, O'Brien ER, Burwash IG, Wells GA, Pourdjabbar A, Simard T, Atkins H, Glover C (2014) Granulocyte colony-stimulating factor therapy for stem cell mobilization following anterior wall myocardial infarction: the CAPITAL STEM MI randomized trial. CMAJ [Internet] 186(11):E434. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24934893

    Google Scholar 

  32. Brenner C, Adrion C, Grabmaier U, Theisen D, von Ziegler F, Leber A, Becker A, Sohn H, Hoffmann E, Mansmann U, Steinbeck G, Franz W, Theiss HD (2016) Sitagliptin plus granulocyte colony-stimulating factor in patients suffering from acute myocardial infarction: a double-blind, randomized placebo-controlled trial of efficacy and safety (SITAGRAMI trial). Int J Cardiol [Internet] 205:23–30, [cited Nov 28, 2016]

    Article  Google Scholar 

  33. San Roman JA, Sánchez PL, Villa A, Sanz-Ruiz R, Fernandez-Santos ME, Gimeno F, Ramos B, Arnold R, Serrador A, Gutiérrez H, Martin-Herrero F, Rollán MJ, Fernández-Vázquez F, López-Messa J, Ancillo P, Pérez-Ojeda G, Fernández-Avilés F (2015) Comparison of different bone marrow-derived stem cell approaches in reperfused STEMI. A multicenter, prospective, randomized, open-labeled TECAM trial. J am Coll Cardiol [Internet] 65(22):2372–2382, [cited Nov 29, 2016]

    Article  Google Scholar 

  34. Steppich B, Hadamitzky M, Ibrahim T, Groha P, Schunkert H, Laugwitz K, Kastrati A, Ott I (2016) Stem cell mobilisation by granulocyte-colony stimulating factor in patients with acute myocardial infarction. Long-term results of the REVIVAL-2 trial. Thromb Haemost [Internet] 115(4):864–868, [cited Nov 29, 2016]

    Article  Google Scholar 

  35. Achilli F, Malafronte C, Cesana F, Maggiolini S, Mauro C, De Ferrari GM, Lenatti L, Tespili M, Pasqualini P, Gentile F, Capogrossi MC, Maggioni A, Maseri A, Pontone G, Colombo GI, Pompilio G (2015) Granulocyte-colony stimulating factor for large anterior ST-elevation myocardial infarction: rationale and design of the prospective randomized phase III STEM-AMI OUTCOME trial. Am Heart J [Internet] 170(4):658.e7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26386788

    Google Scholar 

  36. Belardinelli R (2001) Effects of dipyridamole on coronary collateralization and myocardial perfusion in patients with ischaemic cardiomyopathy. Eur Heart J 22(14):1205–1213

    Article  CAS  PubMed  Google Scholar 

  37. Bergmann MW, Haufe S, von Knobelsdorff-Brenkenhoff F, Mehling H, Waßmuth R, Münch I, Busjahn A, Schulz-Menger J, Jordan J, Luft FC, Dietz R (2011) A pilot study of chronic, low-dose epoetin-b following percutaneous coronary intervention suggests safety, feasibility, and efficacy in patients with symptomatic ischaemic heart failure. Eur J Heart Fail [Internet] 13:560–568. doi:10.1093/eurjhf/hfr002

    Article  CAS  Google Scholar 

  38. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation [Internet] 98(25):2800–2804, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  39. Symes JF, Losordo DW, Vale PR, Lathi KG, Esakof DD, Mayskiy M, Isner JM (1999) Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg [Internet] 68(3):837, [cited Nov 29, 2016]

    Google Scholar 

  40. Vale PR, Losordo DW, Milliken CE, Maysky M, Esakof DD, Symes JF, Isner JM (2000) Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation [Internet] 102(9):965–974, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  41. Sarkar N, Rück A, Källner G, Y-Hassan S, Blomberg P, Islam KB, van der Linden J, Lindblom D, Nygren AT, Lind B, Brodin LA, Drvota V, Sylvén C (2001) Effects of intramyocardial injection of phVEGF-A165 as sole therapy in patients with refractory coronary artery disease–12-month follow-up: Angiogenic gene therapy. J Intern Med [Internet] 250(5):373–381, [cited May 9, 2017]

    Article  CAS  Google Scholar 

  42. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation [Internet] 100(5):468–474, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  43. Rosengart TK, Bishawi MM, Halbreiner MS, Fakhoury M, Finnin E, Hollmann C, Shroyer AL, Crystal RG (2013) Long-term follow-up assessment of a phase 1 trial of angiogenic gene therapy using direct intramyocardial administration of an adenoviral vector expressing the VEGF121 cDNA for the treatment of diffuse coronary artery disease. Hum Gene Ther [Internet] 24(2):23–208. Available from: http://www.liebertonline.com/doi/abs/10.1089/hum.2012.137

    Google Scholar 

  44. Laitinen M, Hartikainen J, Hiltunen MO, Eränen J, Kiviniemi M, Närvänen O, Mäkinen K, Manninen H, Syvänne M, Martin JF, Laakso M, Ylä-Herttuala S (2000) Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther [Internet] 11(2):263–270, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  45. Hedman M, Hartikainen J, Syvänne M, Stjernvall J, Hedman A, Kivelä A, Vanninen E, Mussalo H, Kauppila E, Simula S, Närvänen O, Rantala A, Peuhkurinen K, Nieminen MS, Laakso M, Ylä-Herttuala S (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the kuopio angiogenesis trial (KAT). Circulation [Internet] 107(21):2677–2683, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  46. Hedman M, Muona K, Hedman A, Kivelae A, Syvaenne M, Eraenen J, Rantala A, Stjernvall J, Nieminen MS, Hartikainen J, Ylae-Herttuala S (2009) Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Therapy [Internet] 16(5):629–634. Available from: http://dx.doi.org/10.1038/gt.2009.4

    Article  CAS  Google Scholar 

  47. Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM, Esakof DD, Maysky M, Symes JF, Isner JM (2001) Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation [Internet] 103(17):2138–2143, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  48. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, Schatz RA, Asahara T, Isner JM, Kuntz RE (2002) Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation [Internet] 105(17):2012–2018, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  49. Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Ruzyllo W, Bøtker HE, Dudek D, Drvota V, Hesse B, Thuesen L, Blomberg P, Gyöngyösi M, Sylvén C (2005) Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris a randomized double-blind placebo-controlled study: the euroinject one trial. J Am Coll Cardiol [Internet] 45(7):982–988, [cited May 9, 2017]

    Article  CAS  Google Scholar 

  50. Ripa RS, Jørgensen E, Wang Y, Thune JJ, Nilsson JC, Søndergaard L, Johnsen HE, Køber L, Grande P, Kastrup J (2006) Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation [Internet] 113(16):1983–1992, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  51. Stewart DJ, Kutryk MJB, Fitchett D, Freeman M, Camack N, Su Y, Della Siega A, Bilodeau L, Burton JR, Proulx G, Radhakrishnan S (2009) VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther [Internet] 17(6):1109–1115, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  52. Kastrup J, Jørgensen E, Fuchs S, Nikol S, Bøtker HE, Gyöngyösi M, Glogar D, Kornowski R (2011) A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention [Internet] 6(7):813–818, [cited Nov 29, 2016]

    Article  Google Scholar 

  53. Favaloro L, Diez M, Mendiz O, Janavel GV, Valdivieso L, Ratto R, Garelli G, Salmo F, Criscuolo M, Bercovich A, Crottogini A (2013) High-dose plasmid-mediated VEGF gene transfer is safe in patients with severe ischemic heart disease (Genesis-I). A phase I, open-label, two-year follow-up trial. Catheter Cardiovasc Interv [Internet] 82(6):899–906. Available from: http://onlinelibrary.wiley.com/doi/10.1002/ccd.24555/abstract

    Article  Google Scholar 

  54. Ruel M, Beanlands RS, Lortie M, Chan V, Camack N, de Kemp RA, Suuronen EJ, Rubens FD, JN DS, Sellke FW, Stewart DJ, Mesana TG (2008) Concomitant treatment with oral L-arginine improves the efficacy of surgical angiogenesis in patients with severe diffuse coronary artery disease: the endothelial modulation in angiogenic therapy randomized controlled trial. J Thorac Cardiovasc Surg [Internet] 135(4):770, 770.e1, [cited Nov 29, 2016]

    Article  Google Scholar 

  55. Gyöngyösi M, Khorsand A, Zamini S, Sperker W, Strehblow C, Kastrup J, Jorgensen E, Hesse B, Tägil K, Bøtker HE, Ruzyllo W, Teresiñska A, Dudek D, Hubalewska A, Rück A, Nielsen SS, Graf S, Mundigler G, Novak J, Sochor H, Maurer G, Glogar D, Sylven C (2005) NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: Subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation [Internet] 112(9 Suppl):157, [cited Nov 29, 2016]

    Google Scholar 

  56. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD, West A, Rade JJ, Marrott P, Hammond HK, Engler RL (2002) Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation [Internet] 105(11):1291–1297, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  57. Grines CL, Watkins MW, Mahmarian JJ, Iskandrian AE, Rade JJ, Marrott P, Pratt C, Kleiman N (2003) A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol [Internet] 42(8):1339–1347, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  58. Henry TD, Grines CL, Watkins MW, Dib N, Barbeau G, Moreadith R, Andrasfay T, Engler RL (2007) Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol [Internet] 50(11):1038–1046, [cited Nov 29, 2016]

    Article  CAS  Google Scholar 

  59. Kukuła K, Chojnowska L, Dąbrowski M, Witkowski A, Chmielak Z, Skwarek M, Kądziela J, Teresińska A, Małecki M, Janik P, Lewandowski Z, Kłopotowski M, Wnuk J, Rużyłło W (2011) Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J [Internet] 161(3):581–589. Available from: http://www.sciencedirect.com/science/article/pii/S0002870310011506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoe John Kattoor MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kattoor, A.J., Mathur, P., Mehta, J.L. (2017). Trials of Angiogenesis Therapy in Patients with Ischemic Heart Disease. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_18

Download citation

Publish with us

Policies and ethics