Skip to main content

A Review of Non-driving-related Tasks Used in Studies on Automated Driving

  • Conference paper
  • First Online:
Advances in Human Aspects of Transportation (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 597))

Included in the following conference series:

Abstract

Conditionally automated driving (CAD) relieves the driver from monitoring current traffic conditions. This type of driving inherently enables the driver to execute different non-driving-related tasks (NDRTs). However, the driver still must be available as a backup option. With this in mind, the classification and evaluation of various NDRTs concerning their impact on driver performance in takeover scenarios represent an important contribution toward the creation of safe CAD functions. We reviewed various NDRTs that were used in studies on automated driving. The focus was on assigning aspects of these activities (e.g., ability to visually monitor traffic, necessity of sustained attention to NDRT, etc.) to various steps of the takeover process (e.g., noticing and interpreting takeover requests), which could be impaired by the execution of the respective NDRT. This, in turn, would increase the demands on the driver with respect to managing the takeover situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stutts, J.C., Reinfurt, D.W., Staplin, L., Rodgman, E.A.: The Role of Driver Distraction in Traffic Crashes. AAA Foundation for Traffic Safety, Washington (2001)

    Book  Google Scholar 

  2. Gordon, C.: Driver distraction: an initial examination of the ‘attention diverted by’ contributory factor codes from crash reports and focus group research on perceived risks. 2005 IPENZ Conference, Auckland (2005)

    Google Scholar 

  3. Glaze, A.L., Ellis, J.M.: Pilot Study of Distracted Drivers. Transportation and Safety Training Center, Virginia Commonwealth University, Richmond (2003)

    Google Scholar 

  4. Huemer, A.K., Vollrath, M.: Ablenkung durch fahrfremde Tätigkeiten - Machbarkeitsstudie. Bundesanstalt für Strassenwesen, Bergisch Gladbach (2012)

    Google Scholar 

  5. Schoemig, N., Schoch, S., Neukum, A., Schumacher, M., Wandtner, B.: Simulatorstudien zur Ablenkungswirkung fahrfremder Tätigkeiten. Bundesanstalt für Strassenwesen, Bergisch Gladbach (2015)

    Google Scholar 

  6. Klauer, S.G., Dingus, T.A., Neale, V.L., Sudweeks, J.D., Ramsey, D.J.: The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data. National Highway Traffic Safety Administration, Washington (2006)

    Google Scholar 

  7. Olson, R.L., Hanowski, R.J., Hickman, J.S., Bocanegra, J.L.: Driver Distraction in Commercial Vehicle Operations. Virginia Tech Transportation Institute, Blacksburg (2009)

    Book  Google Scholar 

  8. National Highway Traffic Safety Administration: Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices. National Highway Traffic Safety Administration, Washington, DC (2012)

    Google Scholar 

  9. Spiessl, W., Hussmann, H.: Assessing error recognition in automated driving. IET Intell. Transp. Syst. 5, 103–111 (2011)

    Article  Google Scholar 

  10. Wickens, C.D.: The structure of attentional resources. In: Nickerson, R.S. (ed.) Attention and Performance VIII, pp. 239–257. Taylor & Francis, New York (1980)

    Google Scholar 

  11. May, J.F., Baldwin, C.L.: Driver fatigue: the importance of identifying causal factors of fatigue when considering detection and countermeasure technologies. Trans. Res. F.-Traffic 12, 218–224 (2009)

    Article  Google Scholar 

  12. Toffetti, A., Wilschut, E., Martens, M., Schieben, A., Rambaldini, A., Merat, N., Flemish, F.: CityMobil: human factor issues regarding highly automated vehicles on eLane. Transp. Res. Rec. 2110, 1–8 (2009)

    Article  Google Scholar 

  13. Flemisch, F., Griesche, S., Heesen, M., Kaussner, A., Niemann, J., Petermann, I., Schieben, A., Schoemig, N.: Highly automated vehicles for intelligent transport: Validation of preliminary design of HAVEit systems by simulator tests. Technical report, HAVEit Consortium (2010)

    Google Scholar 

  14. Carsten, O., Lai, F., Barnard, A., Merat, N., Jamson, A.: Control task substitution in semi-automated driving: does it matter what aspects are automated? Hum. Factors 54, 747–761 (2012)

    Article  Google Scholar 

  15. Llaneras, R.E., Salinger, J., Green, C.A.: Human factors issues associated with limited ability autonomous driving systems: drivers’ allocation of visual attention to the forward roadway. In: 7th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 92–98. University of Iowa, Iowa City (2013)

    Google Scholar 

  16. Jamson, A.H., Merat, N., Carsten, O.M., Lai, F.C.: Behavioural changes in drivers experiencing highly-automated vehicle control in varying traffic conditions. Trans. Res. C.-Emerg. 30, 116–125 (2013)

    Article  Google Scholar 

  17. Helldin, T., Falkman, G., Riveiro, M., Davidsson, S.: Presenting system uncertainty in automotive UIs for supporting trust calibration in autonomous driving. In: 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 210–217. ACM, New York (2013)

    Google Scholar 

  18. Dogan, E., Deborne, R., Delhomme, P., Kemeny, A., Jonville, P.: Evaluating the shift of control between driver and vehicle at high automation at low speed: the role of anticipation. In: 5th Transport Research Arena (TRA) Conference, Paris (2014)

    Google Scholar 

  19. Melcher, V., Rauh, S., Diederichs, F., Widlroither, H., Bauer, W.: Take-over requests for automated driving. Proced. Manuf. 3, 2867–2873 (2015)

    Article  Google Scholar 

  20. Naujoks, F., Mai, C., Neukum, A.: The effect of urgency of take-over requests during highly automated driving under distraction conditions. In: Ahram, T., Karowski, W., Marek, T. (eds.) In: 5th International Conference on Applied Human Factors and Ergonomics, vol. 7, pp. 2099–2106. AHFE Conference, Krakau (2014)

    Google Scholar 

  21. Schwalk, M., Kalogerakis, N., Maier, T.: Driver support by a vibrotactile seat matrix – Recognition, adequacy and workload of tactile patterns in take-over scenarios during automated driving. Proced. Manuf. 3, 2466–2473 (2015)

    Article  Google Scholar 

  22. Diederichs, F., Bischoff, S., Widlroither, H., Reilhac, P., Hottelart, K., Moizard, J.: Smartphone integration and SAE level 3 car automation: a new cockpit concept and its evaluation in a car simulator. In: VDI (ed.) Der Fahrer im 21. Jahrhundert, pp. 63–78. VDI-Verlag, Düsseldorf (2015)

    Google Scholar 

  23. Naujoks, F., Purucker, C., Neukum, A.: Secondary task engagement and vehicle automation–Comparing the effects of different automation levels in an on-road experiment. Trans. Res. F.-Traffic 38, 67–82 (2016)

    Article  Google Scholar 

  24. Tijerina, L., Johnston, S., Parmer, E., Pham, H., Winterbottom, M., Barickman, F.: Preliminary Studies in Haptic Displays for Rear-End Collision Avoidance System and Adaptive Cruise Control Applications. National Highway Traffic Safety Administration, Washington (2000)

    Google Scholar 

  25. Petermann-Stock, I., Hackenberg, L., Muhr, T., Mergl, C.: Wie lange braucht der Fahrer - eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten während einer hochautomatisierten Staufahrt. 6. Tagung Fahrerassistenzsysteme - der Weg zum automatischen Fahren. TU München, München (2013)

    Google Scholar 

  26. Neubauer, C., Matthews, G., Saxby, D.: Fatigue in the automated vehicle - do games and conversation distract or energize the driver? Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 58, 2053–2057 (2014)

    Article  Google Scholar 

  27. Rudin-Brown, C.M., Parker, H.A.: Behavioural adaptation to adaptive cruise control (ACC): implications for preventive strategies. Trans. Res. F.-Traffic 7, 59–76 (2004)

    Article  Google Scholar 

  28. Louw, T., Merat, N., Jamson, H.: Engaging with highly automated driving: To be or not to be in the loop? In: 8th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Salt Lake City (2015)

    Google Scholar 

  29. Seppelt, B.D., Lees, M.N., Lee, J.D.: Driver distraction and reliance: adaptive cruise control in the context of sensor reliability and algorithm limits. In: Third International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Rockport (2005)

    Google Scholar 

  30. van den Beukel, A.P., van der Voort, M.C.: The influence of time-criticality on situation Awareness when retrieving human control after automated driving. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC), The Hague (2013)

    Google Scholar 

  31. Politis, I., Brewster, S., Pollick, F.: Language-based multimodal displays for the handover of control in autonomous cars. In: Burnett, G., Gabbard, J., Green, P., Osswald, S., Eren, A., Antrobus, V. (eds.) Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 3–10. ACM, New York (2015)

    Google Scholar 

  32. Blommer, M., Curry, R., Kochhar, D., Swaminathan, R., Talamonti, W., Tijerina, L.: The effects of a scheduled driver engagement strategy in automated driving. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 59, 1681–1685 (2015)

    Article  Google Scholar 

  33. Ma, R., Kaber, D.B.: Situation awareness and workload in driving while using adaptive cruise control and a cell phone. Int. J. Ind. Ergon. 35, 939–953 (2005)

    Article  Google Scholar 

  34. Zeeb, K., Buchner, A., Schrauf, M.: What determines the take-over time? An integrated model approach of driver take-over after automated driving. Accid. Anal. Prev. 78, 212–221 (2015)

    Article  Google Scholar 

  35. Jamson, H., Merat, N., Carsten, O., Lai, F.: Fully-automated driving: the road to future vehicles. In: Sixth International Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Olympic Valley (2011)

    Google Scholar 

  36. Mok, B., Johns, M., Lee, K. J., Miller, D., Sirkin, D., Ive, P., Ju, W.: Emergency, automation off: unstructured transition timing for distracted drivers of automated vehicles. In: 18th IEEE International Conference on Intelligent Transportation Systems (ITSC), Las Palmas (2015)

    Google Scholar 

  37. Walch, M., Lange, K., Baumann, M., Weber, M.: Autonomous driving: investigating the feasibility of car-driver handover assistance. In: Burnett, G., Gabbard, J., Green, P., Osswald, S., Eren, A., Antrobus, V. (eds.) Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 11–18. ACM, New York (2015)

    Google Scholar 

  38. Omae, M., Hashimoto, N., Sugamoto, T., Shimizu, H.: Measurement of driver’s reaction time to failure of steering controller during automatic driving. SAE J.-Rev. Automot. Eng. 26, 213–215 (2005)

    Google Scholar 

  39. Schaller, T., Schiehlen, J., Gradenegger, B.: Stauassistenz–Unterstützung des Fahrers in der Quer-und Längsführung: Systementwicklung und Kundenakzeptanz. 3th Conference on Driver Assistance, Munich (2008)

    Google Scholar 

  40. Damböck, D., Farid, M., Tönert, L., Bengler, K.: Übernahmezeiten beim hochautomatisierten Fahren. In: 5th Conference on Driver Assistance, Munich (2012)

    Google Scholar 

  41. Beggiato, M., Krems, J.F.: The evolution of mental model, trust and acceptance of adaptive cruise control in relation to initial information. Trans. Res. F.-Traffic 18, 47–57 (2013)

    Article  Google Scholar 

  42. Vollrath, M., Schleicher, S., Gelau, C.: The influence of cruise control and adaptive cruise control on driving behaviour–a driving simulator study. Accid. Anal. Prev. 43, 1134–1139 (2011)

    Article  Google Scholar 

  43. Stockert, S., Richardson, N.T., Lienkamp, M.: Driving in an increasingly automated world-approaches to improve the driver-automation interaction. Proced. Manuf. 3, 2889–2896 (2015)

    Article  Google Scholar 

  44. Gold, C., Lorenz, L., Damböck, D., Bengler, K.: Partially automated driving as a fallback level of high automation. In: 6th Conference on Driver Assistance, Munich (2013)

    Google Scholar 

  45. Lorenz, L., Hergeth, S.: Einfluss der Nebenaufgabe auf die Überwachungsleistung beim teilautomatisierten Fahren. In: VDI (ed.) Der Fahrer im 21. Jahrhundert, pp. 159–173. VDI-Verlag, Düsseldorf (2015)

    Google Scholar 

  46. Lorenz, L., Kerschbaum, P., Schumann, J.: Designing take over scenarios for automated driving: how does augmented reality support the driver to get back into the loop? Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 58, 1681–1685 (2014)

    Article  Google Scholar 

  47. Kerschbaum, P., Lorenz, L., Bengler, K.: Highly automated driving with a decoupled steering wheel. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 58, 1686–1690 (2014)

    Article  Google Scholar 

  48. Beller, J., Heesen, M., Vollrath, M.: Improving the driver–automation interaction an approach using automation uncertainty. Hum. Factors 55, 1130–1141 (2013)

    Article  Google Scholar 

  49. Hergeth, S., Lorenz, L., Krems, J. F., Toenert, L.: Effects of take-over requests and cultural background on automation trust in highly automated driving. In: 8th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, Salt Lake City (2015)

    Google Scholar 

  50. Körber, M., Weißgerber, T., Kalb, L., Blaschke, C., Farid, M.: Prediction of take-over time in highly automated driving by two psychometric tests. DYNA 82, 195–201 (2015)

    Article  Google Scholar 

  51. Radlmayr, J., Gold, C., Lorenz, L., Farid, M., Bengler, K.: How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 58, 2063–2067 (2014)

    Article  Google Scholar 

  52. Merat, N., Jamson, A.H., Lai, F.C., Carsten, O.: Highly automated driving, secondary task performance, and driver state. Hum. Factors 54, 762–771 (2012)

    Article  Google Scholar 

  53. Gold, C., Körber, M., Hohenberger, C., Lechner, D., Bengler, K.: Trust in automation – before and after the experience of take-over scenarios in a highly automated vehicle. Proced. Manuf. 3, 3025–3032 (2015)

    Article  Google Scholar 

  54. Lin, T.W., Hwang, S.L., Green, P.A.: Effects of time-gap settings of adaptive cruise control (ACC) on driving performance and subjective acceptance in a bus driving simulator. Saf. Sci. 47, 620–625 (2009)

    Article  Google Scholar 

  55. Lee, J., McGehee, D., Brown, T., Marshall, D.: Effects of adaptive cruise control and alert modality on driver performance. Transp. Res. Rec. 1980, 49–56 (2006)

    Article  Google Scholar 

  56. Petermeijer, S.M., Abbink, D.A., de Winter, J.C.: Should drivers be operating within an automation-free bandwidth? Evaluating haptic steering support systems with different levels of authority. Hum. Factors 57, 5–20 (2015)

    Article  Google Scholar 

  57. Stanton, N.A., Young, M., McCaulder, B.: Drive-by-wire: the case of driver workload and reclaiming control with adaptive cruise control. Saf. Sci. 27, 149–159 (1997)

    Article  Google Scholar 

  58. Ho, A.W., Cummings, M.L.: Multiple alarms and driving situational awareness (No. HAL2005-01). MIT, Cambridge (2005)

    Google Scholar 

  59. Beggiato, M., Hartwich, F., Schleinitz, K., Krems, J., Othersen, I., Petermann-Stock, I.: What would drivers like to know during automated driving? Information needs at different levels of automation. In: 7th conference driver assistance, Munich (2015)

    Google Scholar 

  60. Körber, M., Cingel, A., Zimmermann, M., Bengler, K.: Vigilance decrement and passive fatigue caused by monotony in automated driving. Proced. Manuf. 3, 2403–2409 (2015)

    Article  Google Scholar 

  61. Schömig, N., Hargutt, V., Neukum, A., Petermann-Stock, I., Othersen, I.: The interaction between highly automated driving and the development of drowsiness. Proced. Manuf. 3, 6652–6659 (2015)

    Article  Google Scholar 

  62. Barr, L.C., Yang, C.Y.D., Hanowski, R.J., Olson, R.: An Assessment of Driver Drowsiness, Distraction, and Performance in a Naturalistic Setting. Department of Transportation Research and Special Programs Administration, Washington, DC (2011)

    Google Scholar 

  63. Pal, N.R., Chuang, C.-Y., Ko, L.-W., Chao, C.-F., Jung, T.-P., Liang, S.-F., Lin, C.-T.: EEG-based subject-and session-independent drowsiness detection: an unsupervised approach. EURASIP J. Adv. Signal Process. 2008, 1–11 (2008)

    Article  Google Scholar 

  64. Kroes, S.: Detecting Boredom in Meetings. University of Twente, Enschede (2005)

    Google Scholar 

  65. Åkerstedt, T., Gillberg, M.: Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 52, 29–37 (1990)

    Article  Google Scholar 

  66. Briggs, G.F., Hole, G.J., Land, M.F.: Emotionally involving telephone conversations lead to driver error and visual tunnelling. Trans. Res. F.-Traffic 14, 313–323 (2011)

    Article  Google Scholar 

  67. Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1977)

    Google Scholar 

  68. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Personal. Soc. Psychol. 54, 1063–1070 (1988)

    Article  Google Scholar 

  69. Jackson, S.A., Marsh, H.W.: Development and validation of a scale to measure optimal experience: The Flow State Scale. J. Sport Exerc. Psychol. 18, 17–35 (1996)

    Article  Google Scholar 

  70. Mackworth, N.: The breakdown of vigilance during prolonged visual search. Q. J. Exp. Psychol. 1, 6–21 (1948)

    Article  Google Scholar 

  71. Robertson, I.H., Manly, T., Andrade, J., Baddeley, B.T., Yiend, J.: Oops!: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 35, 747–758 (1997)

    Article  Google Scholar 

  72. Lim, J., Dinges, D.F.: Sleep deprivation and vigilant attention. Ann. NY Acad. Sci. 1129, 305–322 (2008)

    Article  Google Scholar 

  73. Oken, B.S., Salinsky, M.C., Elsas, S.: Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 117, 1885–1901 (2006)

    Article  Google Scholar 

  74. O’Donnell, R.D., Eggemeier, F.T.: Workload assessment methodology. In: Handbook of Perception and Human Performance, pp. 1–49. Wiley, New York (1986)

    Google Scholar 

  75. De Waard, D.: The Measurement of Drivers’ Mental Workload. Traffic Research Center Groningen University, Groningen (1996)

    Google Scholar 

  76. Martens, M., Van Winsum, W.: Measuring Distraction: The Peripheral Detection Task. TNO, Soesterberg (2000)

    Google Scholar 

  77. Boles, D.B., Adair, L.P.: The multiple resources questionnaire (MRQ). Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 45, 1790–1794 (2001)

    Article  Google Scholar 

  78. Pauzié, A.: A method to assess the driver mental workload: the driving activity load index (DALI). IET Intell. Transp. Sy. 2, 315–322 (2008)

    Article  Google Scholar 

  79. Pauzié, A.: Evaluating driver mental workload using the driving activity load index (DALI). In: C. Brusque (ed.) Proceedings of European Conference on Human Interface Design for Intelligent Transport Systems, pp. 67–79. HUMANIST publications, Lyon (2008)

    Google Scholar 

  80. Baddeley, A.D.: Working memory. Science 255, 556–559 (1992)

    Article  Google Scholar 

  81. Kahneman, D.: Attention and Effort. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  82. Pashler, H.: Dual-task interference in simple tasks: data and theory. Psychol. Bull. 116, 220–224 (1994)

    Article  Google Scholar 

  83. May, J.G., Kennedy, R.S., Williams, M.C., Dunlap, W.P., Brannan, J.R.: Eye movement indices of mental workload. Acta Psychol. 75, 75–89 (1990)

    Article  Google Scholar 

  84. Wilson, G.F., Eggemeier, F.T.: Psychophysiological assessment of workload in multi-task environments. In: Damos, D.L. (ed.) Multiple-Task Performance, pp. 329–360. Taylor & Francis, London (1991)

    Google Scholar 

  85. Kramer, A.F.: Physiological metrics of mental workload: a review of recent progress. In: Damos, D.L. (ed.) Multiple-Task Performance, pp. 279–328. Taylor & Francis, London (1991)

    Google Scholar 

  86. Porges, S.W., Byrne, E.A.: Research methods for measurement of heart rate and respiration. Biol. Psychol. 34, 93–130 (1992)

    Article  Google Scholar 

  87. Zijlstra, F.R.H., Doorn, L.V.: The Construction of a Scale to Measure Subjective Effort. TU Delft, Delft (1985)

    Google Scholar 

  88. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)

    Article  Google Scholar 

  89. Wittmann, M., Kiss, M., Gugg, P., Steffen, A., Fink, M., Pöppel, E., Kamiya, H.: Effects of display position of a visual in-vehicle task on simulated driving. Appl. Ergon. 37, 187–199 (2006)

    Article  Google Scholar 

  90. Burnett, G.: An evaluation of different positions for an in-vehicle navigation display. In: Proceedings of the International Conference of Traffic and Transport Psychology, Nottingham (2004)

    Google Scholar 

  91. Tretten, P., Normark, C.J., Gärling, A.: Warnings and placement positions in automobiles. In: Proceedings of the 17th Triennial Congress of the International Ergonomics Association, Beijing (2009)

    Google Scholar 

  92. Mehler, B., Reimer, B., Dobres, J., Coughlin, J.F.: Assessing the Demands of Voice Based In-Vehicle Interfaces - Phase II Experiment 3–2015 Toyota Corolla. MIT, Cambridge (2015)

    Google Scholar 

  93. Mehler, B., Reimer, B., McAnulty, H., Dobres, J., Lee, J., Coughlin, J.F.: Assessing the Demands of Voice Based In-Vehicle Interfaces - Phase II Experiment 2–2014 Mercedes CLA. MIT, Cambridge (2015)

    Google Scholar 

  94. Metz, B.: Worauf achtet der Fahrer?. Julius-Maximilians-Universität Würzburg, Würzburg (2009)

    Google Scholar 

  95. Dingus, T.A., Hulse, M.C., Antin, J.F., Wierwille, W.W.: Attentional demand requirements of an automobile moving-map navigation system. Transp. Res. A-Pol. 23, 301–315 (1989)

    Article  Google Scholar 

  96. Schneegaß, S., Pfleging, B., Kern, D., Schmidt, A.: Support for modeling interaction with automotive user interfaces. In: Tscheligi, M., Kranz, M., Weinberg, G., Meschtscherjakov, A., Murer, M., Wilfinger, D. (eds.) Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 71–78. ACM, New York (2011)

    Google Scholar 

  97. Pettitt, M., Burnett, G., Karbassioun, D.: Applying the keystroke level model in a driving context. In: Ergonomics Society Annual Conference, San Francisco (2006)

    Google Scholar 

  98. Purucker, C., Naujoks, F., Prill, A., Neukum, A.: Evaluating distraction of in-vehicle information systems while driving by predicting total eyes-off-road times with keystroke level modeling. Appl. Ergon. 68, 543–554 (2017)

    Article  Google Scholar 

  99. Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25, 54–67 (2000)

    Article  Google Scholar 

  100. Deci, E.L.: Effects of externally mediated rewards on intrinsic motivation. J. Personal. Soc. Psychol. 18, 105–115 (1971)

    Article  Google Scholar 

  101. Ryan, R.M.: Control and information in the intrapersonal sphere: an extension of cognitive evaluation theory. J. Personal. Soc. Psychol. 43, 450–461 (1982)

    Article  Google Scholar 

  102. Harackiewicz, J.M.: The effects of reward contingency and performance feedback on intrinsic motivation. J. Personal. Soc. Psychol. 37, 1352–1363 (1979)

    Article  Google Scholar 

  103. Gold, C., Naujoks, F., Radlmayr, J., Bellem, H., Jarosch, O..: Testing-scenarios for human factors research in highly automated vehicles. In: 8th Conference on Applied Human Factors and Ergonomics, Los Angeles, USA (2017)

    Google Scholar 

  104. Marberger, C., Mielenz, H., Naujoks, F., Radlmayr, J., Bengler, K., Wandtner, B.: Understanding and applying the concept of “driver availability” in automated driving. In: 8th Conference on Applied Human Factors and Ergonomics, Los Angeles, USA (2017)

    Google Scholar 

Download references

Acknowledgements

This work results from the joint project Ko-HAF - Cooperative Highly Automated Driving and has been funded by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Naujoks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Naujoks, F., Befelein, D., Wiedemann, K., Neukum, A. (2018). A Review of Non-driving-related Tasks Used in Studies on Automated Driving. In: Stanton, N. (eds) Advances in Human Aspects of Transportation. AHFE 2017. Advances in Intelligent Systems and Computing, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-319-60441-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60441-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60440-4

  • Online ISBN: 978-3-319-60441-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics