Skip to main content

Cold-Water Carbonate Bioconstructions

  • Chapter
  • First Online:
Submarine Geomorphology

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Cold-water carbonate bioconstructions are the product of complex interactions between calcifying organisms and the surrounding environment, and deeply contribute in affecting the evolution of the submarine landscape in space and time. Important variables contributing to their development, growth and/or demise include sedimentary dynamics, food supply, physical and chemical characteristics of water masses and local hydrodynamic regimes. Geomorphological studies of bioconstructions are therefore critical in deciphering the physical and biological processes contributing to their development. The aim of this chapter is to summarise the state of the art of geomorphic studies on temperate coralligenous bioconstructions and cold-water coral reefs/mound systems, both representing the two most important and largest carbonate bioconstructions in temperate and deep-sea waters. The importance of these biogenic constructions covers several aspects. They can represent important carbonate factories of the deep sea, archives of past climate and oceanographic conditions and they support increased species diversity and complex biotic interactions with respect to the surrounding seafloor. Because of their remote location (from hundreds to thousands of meters below sea level), only since the last tens of years, technological advances are allowing fine-scale physical and ecological investigations of these bioconstructions, containing ecosystem engineers able to strongly modify the landscape heterogeneity. An increased awareness of their potential extension and significance as natural resource, is now steering scientific efforts towards the need to overcome the gaps in knowledge and contribute to prevent their vulnerability to an increasing human pressure.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-57852-1_28

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abel EF (1961) Uber die Beziehung mariner Fische zu Hartbodenstrukturen. Sper Osterr Akad Wiss (Math Nat Kl Abt A) 170:223–263

    Google Scholar 

  • Baillon S, Hamel JF, Wareham VE, Mercier A (2012) Deep cold-water corals as nurseries for fish larvae. Front Ecol Environ 10(7):351–356

    Article  Google Scholar 

  • Balata D, Acunto S, Cinelli F (2006) Spatio–temporal variability and vertical distribution of a low rocky subtidal assemblage in the north-west Mediterranean. Estuar Coast Shelf Sci 67:553–561. doi:10.1016/j.ecss.2005.12.009

    Article  Google Scholar 

  • Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Annu Rev 44:23–195

    Google Scholar 

  • Basso D (2012) Carbonate production by calcareous red algae and global change. In: Basso D, Granier B (eds) Calcareous algae and global change: from identification to quantification. Geodiversitas 34:13–33

    Google Scholar 

  • Basso D, Nalin R, Massari F (2007) Genesis and composition of the Pleistocene Coralligène de plateau of the Cutro Terrace (Calabria, Southern Italy). N Jb Geol Paläont 244(2):73–182

    Google Scholar 

  • Bellan-Santini D, Lacaze JC, Poizat C (1994) Les biocénoses marines et littorales de Méditerranée, synthèse, menaces et perspectives. Collection Patrimoines Naturels. Secrétariat de la Faune et de la Flore/M.N.H.N. 19:1–246

    Google Scholar 

  • Ben Haj S, Boero F, Cebrian D, De Juan S, Limam A, Lleonart J, Torchia G, Rais C (eds), RAC/SPA, Tunis, pp 100

    Google Scholar 

  • Bonacorsi M, Pergent-Martini C, Clabaut P, Pergent G (2012) Coralligenous ‘‘atolls’’: discovery of a new morphotype in the Western Mediterranean Sea. C R Biol 335:668–672

    Article  Google Scholar 

  • Bosellini A, Ginsburg NR (1971) Form and internal structure of recent algal nodules (Rhodolites) from Bermuda. J Geol 79:669–682

    Article  Google Scholar 

  • Bosence DWJ, Pedley HM (1982) Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr Palaeoclimatol Palaeoecol 38:9–43. 10.1016/0031-0182(82)90062-1

  • Bosence DWJ, Bridges PH (1995) A review of the origin and evolution of carbonate mud-mounds. In: Monty CLV, Bosence DWJ, Bridges PH, Pratt BR (eds) Carbonate mud-mounds, their origin and evolution. Special Publications International Association Sedimentologists, vol 23. Blackwell, Oxford, pp 3–9

    Google Scholar 

  • Bracchi VA, Savini A, Marchese F, Palamara S, Basso D, Corselli C (2015) Coralligenous habitat in the Mediterranean Sea: a geomorphological description from remote data. Ital J Geosci 134(1):32–40. doi:10.3301/IJG.2014.16

    Article  Google Scholar 

  • Bracchi VA, Nalin R, Basso D (2016) Morpho-structural heterogeneity of shallow-water coralligenous in a Pleistocene marine terrace (Le Castella, Italy). Pal Pal Pal 454:101–112

    Google Scholar 

  • Brooke S, Schroeder WW (2007) State of deep coral ecosystems in the Gulf of Mexico Region: Texas to the Florida straits. In: Lumsden SE, Hourigan TF, Bruckner AW, Dorr G (eds) The state of deep coral ecosystems of the United States. NOAA Technical Memorandum CRCP-3, Silver Spring, MD, pp 271–306

    Google Scholar 

  • Brooke S, Ross SW, Bane JM, Seim HE, Young CM (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Res II 92:240–248

    Article  Google Scholar 

  • Buhl-Mortensen PB (2000) Lophelia pertusa (Scleractinia) in Norwegian waters. Distribution, growth, and associated fauna. Dr. Scient thesis, Department of Fisheries and Marine Biology, University of Bergen, Norway

    Google Scholar 

  • Buhl-Mortensen PB, Lepland A (2007) Ecological consequences of exploration drilling on coral reefs. Fiskenog Havet 7:123

    Google Scholar 

  • Buhl-Mortensen PB, Hovland MT, Fosså JH, Furevik DM (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK 81:581–597

    Article  Google Scholar 

  • Buhl-Mortensen P, Buhl-Mortensen L, Purser A (2016a) Trophic ecology and habitat provision in cold-water coral ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas Saco del Valle C (eds) Marine animal forests, the ecology of benthic biodiversity hotspots, Springer International Publishing, Switzerland, pp 2–23

    Google Scholar 

  • Buhl-Mortensen L, Serigstad B, Buhl-Mortensen P, Olsen MN, Ostrowski M, Błażewicz-Paszkowycz M, Appoh E (2016b) First observations of the structure and megafaunal community of a large Lophelia reef on the Ivorian-Ghanaian margin (the Gulf of Guinea). Deep-Sea Res Part II. 10.1016/j.dsr2.2016.06.007

  • Cairns S (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81(3):311–322

    Google Scholar 

  • Campiani E, Foglini F, Fraschetti S, Savini A, Angeletti L (2014) Conservation and management of coralligenous habitat: experience form the BIOMAP project. GEOHAB meeting 2014, Lorne, Australia, 6–9 May, Abstract Volume

    Google Scholar 

  • Canals M, Ballesteros E (1997) Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, Northwestern Mediterranean Sea. Deep-Sea Res II Top Stud Oceanogr 44:611–629. doi:10.1016/S0967-0645(96)00095-1

    Article  Google Scholar 

  • Carannante G, Simone L (1996) Rhodolith facies in the central–southern Appenines Mountains, Italy. In: Franseen EK, Esteban M, Ward WC, Rouchy JM (eds) Models for carbonate stratigraphy from miocene reef complexes of Mediterranean regions. SEPM concepts in sedimentology and palaeontology, vol 5, pp 261–275

    Google Scholar 

  • Casellato S, Stefanon A (2008) Coralligenous habitat in the northern Adriatic Sea: an overview. Mar Ecol 29:321–341

    Article  Google Scholar 

  • Cocito S (2004) Bioconstruction and biodiversity: their mutual influence. Sci Mar 68(1):137–144

    Article  Google Scholar 

  • Colman JG, Gordon DM, Lane AP, Forde MJ, Fitz PJJ (2005) Carbonate mounds off Mauritania, Northwest Africa: status of deep-water corals and implications for management of fishing and oil exploration activities. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 417–441

    Chapter  Google Scholar 

  • Correa TBS, Eberli GP, Grasmueck M, Reed JK, Correa AMS (2012) Genesis and morphology of cold-water coral ridges in a unidirectional current regime. Mar Geol 326–328:14–27

    Article  Google Scholar 

  • De Mol B, Kozachenko M, Wheeler A, Alvares H, Henriet JP, Le Roy O (2007) Thérèse Mound: a case study of coral bank development in the Belgica Mound Province, Porcupine Seabight. Int J Earth Sci 96:103–120

    Article  Google Scholar 

  • De Mol B, Huvenne VAI, Canals M (2009) Cold-water coral banks and submarine landslides: a review. Int J Earth Sci 98(4):885–899

    Article  Google Scholar 

  • De Mol L, Van Rooij D, Pirlet H, Greinert J, Frank N, Quemmerais F, Henriet JP (2011) Cold-water coral habitats in the Penmarc’h and Guilvinec Canyons (Bay of Biscay): Deep-water versus shallow-water settings. Mar Geol 282:40–52

    Article  Google Scholar 

  • De Vogelaere A, Burton EJ, Trejo T, King CE, Clague DA, Tamburri MN, Cailliet GM, Kochevar RE, Douros WJ (2005) Deep-sea corals and resource protection at the Davidson Seamount, California, U.S.A. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 1189–1198

    Chapter  Google Scholar 

  • Di Geronimo I, Di Geronimo R, Rosso A, Sanfilippo R (2002) Structural and taphonomic analysis of a columnar coralline algal build-up from SE Sicily. Géobios 24:86–95

    Article  Google Scholar 

  • Di Geronimo I, Messina C, Rosso A, Sanfilippo R, Sciuto F, Vertino A (2005) Enhanced biodiversity in the deep: early pleistocene coral communities from southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 61–86

    Chapter  Google Scholar 

  • Dorschel B, Hebbeln D, Foubert A, White M, Wheeler AJ (2007) Hydrodynamics and cold-water coral facies distribution related to recent sedimentary processes at Galway Mound west of Ireland. Mar Geol 244:184–195

    Article  Google Scholar 

  • Dorschel B, Hebbeln D, Ruggeberg A, Dullo W, Freiwald A (2005) Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet Sc Lett 233(1–2):33–44

    Google Scholar 

  • Douarin M, Sinclair DJ, Elliot M, Henry LA, Long D, Mitchison F, Roberts JM (2009) Changes in fossil assemblage in sediment cores from Mingulay Reef Complex (NE Atlantic): implications for coral reef build-up. Deep Sea Res Part II 99:286–296

    Article  Google Scholar 

  • Doxa A, Holon F, Deter J, Villeger S, Boissery P, Mouquet (2016) Mapping biodiversity in three-dimensions challenges marineconservation strategies: the example of coralligenous assemblages in North-Western Mediterranean Sea. Ecol Ind 61:1042–1054

    Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water coral community Galicia Bank, NW Spain. Mar Ecol Prog Ser 277:13–23

    Article  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Bergman MJN, De Stigter H, Mienis F (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull Mar Sci 81(3):449–467

    Google Scholar 

  • Dullo WC, Flögel S, Rüggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol Prog Ser 371:165–176

    Article  Google Scholar 

  • Eisele M, Frank N, Wienberg C, Titschack J, Mienis F, Beuck L, Tisnerat-Laborde N, Hebbeln D (2014) Sedimentation patterns on a cold-water coral mound off Mauritania. Deep-Sea Res II 99:307–315

    Article  Google Scholar 

  • Esentia I, Stow D, Smillie Z (2018) Contourite drifts and associated bedforms. In: Micallef A, Krastel S, Savini A (eds) (2018) Submarine Geomorphology. Springer

    Google Scholar 

  • European Commission (2010) Commission decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters. Off J Eur Union L232/14

    Google Scholar 

  • European Parliament, Council of the European Union (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off J Eur Union L164/19

    Google Scholar 

  • Fink HG, Wienberg C, Hebbeln D, McGregor HV, Schmiedl G, Taviani M, Freiwald A (2013) Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep-Sea Res-I 62:89–96

    Article  Google Scholar 

  • Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 937–977

    Chapter  Google Scholar 

  • Fosså JH, Skjoldal HR, (2010) Conservation of cold water coral reefs in Norway. In Grafton RQ Hilborn R, Squires D, Tait M, Williams M (eds) Handbook of marine fisheries conservation and management. Oxford University Press, New York, pp 215–230

    Google Scholar 

  • Fosså JH, Mortensen PB, Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471:1–12

    Article  Google Scholar 

  • Fosså JH, Lindberg B, Christensen O, Lundälv T, Svellingen I et al (2005) Mapping of Lophelia reefs in Norway: experiences and survey methods. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 359–391

    Chapter  Google Scholar 

  • Foubert A, Henriet JP (2009) Nature and significance of the recent carbonate mound record: the mound challenger code. Lecture notes in earth sciences, vol 126. Springer, 298 pp. ISBN: 978-3-642-00289-2

    Google Scholar 

  • Foubert A, Huvenne VAI, Wheeler A, Kozachenko M, Opderbecke J, Henriet JP (2011) The Moira Mounds, small cold-water coral mounds in the Porcupine Seabight, NE Atlantic: Part B—Evaluating the impact of sediment dynamics through high-resolution ROV-borne bathymetric mapping. Mar Geol 282:65–78

    Google Scholar 

  • Frank N, Ricard E, Lutringer-Paquet A, Van Der Land C, Colin C, Blamart D, Foubert A, Van Rooij D, Henriet J-P, De Haas H, Van Weering T (2009) The Holocene occurrence of cold water corals in the NE Atlantic: implications for coral carbonate mound evolution. Mar Geol 266:129–142

    Article  Google Scholar 

  • Frantz BR, Foster MS, Riosmena-Rodriguez R (2005) Clathromorphum nereostratum (Coral- linales, Rhodophyta): the oldest alga? J Phycol 41:770–773

    Article  Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West-Finnmark, northern Norway. Cool-water carbonates. In: James NP (ed) SEPM Special Publication, 56, pp 141–161

    Google Scholar 

  • Freiwald A, Wilson JB, Henrich R (1999) Grounding pleistocene icebergs shape recent deep-water coral reefs. Sed Geol 125:1–8

    Article  Google Scholar 

  • Freiwald A, Huhnerbach V, Lindberg B, Wilson JB, Campbell J (2002) The Sula Reef complex, Norwegian Shelf. Facies 47:179–200

    Article  Google Scholar 

  • Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs. UNEP-WCMC, Cambridge, UK

    Google Scholar 

  • Genin A, Dayton PK, Lonsdale PF, Spiess FN (1986) Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322:59–61

    Article  Google Scholar 

  • Georgian SE, DeLeo D, Durkin A, Gomez CE, Kurman M, Lunden JJ, Cordes EE (2016) Oceanographic patterns and carbonate chemistry in the vicinity of cold-water coral reefs in the Gulf of Mexico: implications for resilience in a changing ocean. Limnol Oceanogr 61:648–665

    Article  Google Scholar 

  • Giaccone G, Giaccone T, Catra M (2009) Association with Laminaria rodriguezii on a detritic bottom and on rocks: cystoseiretum zosteroidis Giaccone 1973 subass. Laminarietosum rodriguezii Giaccone 1973. In: Priority habitats according to the SPA/BIO protocol (Barcelona Convention) present in Italy. Identification sheets 16:204–208

    Google Scholar 

  • Ginsburg RN, Gischler E, Schlager W (1994) Johannes Walther on reefs. Geological milestones, vol II. Comparative Sedimentology Laboratory, Rosential School of Marine and Atmospheric Science, University of Miami, 141 pp

    Google Scholar 

  • Glogowski S, Dullo WC, Feldens P, Liebetrau V, Von Reumont J, Hühnerbach V, Krastel S, Wynn RB, Flögel S (2015) The Eugen Seibold coral mounds offshore western Morocco: oceanographic and bathymetric boundary conditions of a newly discovered cold-water coral province. Geo-Mar Lett 35:257–269

    Article  Google Scholar 

  • Gori A, Orejas C, Madurell T, Bramanti L, Martin M, Quintanilla E, Marti-Puig P, Lo Iacono C, Puig P, Requena S, Greeacre M, Gili JM (2013) Bathymetrical distribution and size structure of coldwater coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10:2049–2060

    Article  Google Scholar 

  • Grasmueck M, Eberli GP, Viggiano DA, Correa T, Rathwell G, Luo J (2006) Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys Res Lett 33:L23616. doi:10.1029/2006GL027734

    Article  Google Scholar 

  • Guidetti P, Terlizzi A, Fraschetti S, Boero F (2002) Spatio-temporal variability in fish assemblages associated with coralligenous formations in south eastern Apulia (SE Italy). Ital J Zool 69:325–331

    Article  Google Scholar 

  • Guinan J, Grehan AJ, Dolan MFJ, Brown C (2009) Quantifying relationships between video observations of cold-water coral cover and seafloor features in Rockall Trough, west of Ireland. MEPS 375:125–138

    Article  Google Scholar 

  • Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146

    Article  Google Scholar 

  • Hebbeln D, Samankassou E (2015) Where did ancient carbonate mounds grow—in bathyal depths or in shallow shelf waters? Earth Sci Rev 145:56–65

    Article  Google Scholar 

  • Hebbeln D, Wienberg C, Wintersteller P, Freiwald A, Becker M, Beuck L, Dullo C, Eberli GP, Glogowski S, Matos L, Forster N, Reyes-Bonilla H, Taviani M, The MSM 20-4 Shipboard Scientific Party (2014) Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11:1799–1815

    Google Scholar 

  • Hebbeln D, Van Rooij D, Wienberg C (2016) Good neighbours shaped by vigorous currents: cold-water coral mounds and contourites in the North Atlantic. Mar Geol 378:171–185

    Article  Google Scholar 

  • Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unnithan V, Bouriak S, Chachkine P, Porcupine-Belgica 97 Shipboard Party (1998) Gas hydrate crystals may help build reefs. Nature 391:648–649

    Google Scholar 

  • Henry LA, Roberts JM (2007) Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res Part I Oceanogr Res 54(4):654–672

    Article  Google Scholar 

  • Henry LA, Navas JM, Roberts JM (2013) Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences 10(4):2737–2746

    Google Scholar 

  • Hernández-Molina FJ, Llave E, Preu B, Ercilla G, Fontan A, Bruno M, Serra N, Gomiz JJ, Brackenridge RE, Sierro FJ, Stow DAV, García M, Juan C, Sandoval N, Arnaiz A (2014) Contourite processes associated with the Mediterranean outflow water after its exit from the Strait of Gibraltar: global and conceptual implications. Geology 42:227–230

    Article  Google Scholar 

  • Hong JS (1982) Contribution à l’étude des peuplements d’un fond coralligène dans la région marseillaise en Méditerranée Nord-Occidentale. Bull KORDI 4:27–51

    Google Scholar 

  • Hovland M, Croker PF, Martin M (1994) Fault-associated seabed mounds (carbonate knolls?) off western Ireland and northwest Australia. Mar Pet Geol 11:232–246

    Article  Google Scholar 

  • Husebø Å, Nøttestad L, Fosså JH, Furevik DM, Jørgensen SB (2002) Distribution and abundance of fish in deep-sea coral habitats. Hyrdobiologia 471:91–99

    Article  Google Scholar 

  • Huvenne VAI, De Mol B, Henriet JP (2003) A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine Basin, SW of Ireland. Mar Geol 198:5–25

    Article  Google Scholar 

  • Huvenne VAI, Masson DG, Wheeler AJ (2009) Sediment dynamics of a sandy contourite: the sedimentary context of the Darwin cold-water coral mounds, Northern Rockall Trough. Int J Earth Sci (Geol Rundsch) 98:865–884

    Article  Google Scholar 

  • Huvenne VAI, Tyler PA, Masson DG, Fisher EH, Hauton C, Hühnerbach V, Le Bas T, Wolff GA (2011) A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine Canyon. PLoS ONE 6(12):e28755. doi:10.1371/journal.pone.0028755

    Article  Google Scholar 

  • James NP, Bourque P-A (1992) Reefs and mounds. In: Walker RG, James NP (eds) Facies Models, response to sea level change. Geological Association of Canada, Geotext (1), pp 323–347

    Google Scholar 

  • James NP, Clarke JDA (eds) (1997) Cool-water carbonates. SEPM Special Publication 56, Tulsa, OK, pp 1–20

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kamenos NA, Hoey TB, Nienow P, Fallick AE, Clavere T (2012) Reconstructing greenland ice sheet runoff using coralline algae. Geology 40(12):1095–1098

    Article  Google Scholar 

  • Kano A, Ferdelman TG, Williams T, Henriet JP, Ishikawa T, Kawagoe N, Takashima, C, Kakizaki Y, Abe K, Sakai S, Browning E, Li X, The IODP Expedition 307 Scientists (2007) Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during integrated ocean drilling program expedition 307. Geology 35(11):1051–1054

    Google Scholar 

  • Kenyon NH, Akhmetzhanov AM, Wheeler AJ, Van Weering TCE, De Haas H, Ivanov MK (2003) Giant carbonate mud mounds in the southern Rockall Trough. Mar Geol 195:5–30

    Article  Google Scholar 

  • Klement KW (1967) Practical classification of reefs and banks, bioherms and biostromes. Am Assoc Pet Geol Bull 51:167–168

    Google Scholar 

  • Kružić P (2013) Bioconstructions in the Mediterranean: present and future. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges, Springer, Berlin, pp 435–447

    Google Scholar 

  • Laborel J (1961) Le concrétionnement algal ‘Coralligène’ et son importance géomorphologique en Méditerranée. Recueils Trav Stat Mar Endoume 23:37–60

    Google Scholar 

  • Laborel J (1987) Marine biogenic constructions in the Mediterranean. a review. Sci Rep Port-Cros Natl Park 13:97–126

    Google Scholar 

  • Laubier L (1966) Le coralligène des Albères. Monographie biocénotique. Annales Institut Océanographique, Paris, 43(2):137–316

    Google Scholar 

  • Le Guilloux E, Olu K, Bourillet JF, Savoye B, Iglesias FP, Sibuet M (2009) First observations of deep-sea coral reefs along the Angola margin. Deep-Sea Res II 56:2394–2403

    Article  Google Scholar 

  • Lindberg B (2004) Cold-water coral reefs on the norwegian shelf—acoustic signature, geological, geomorphological and environmental setting. Ph.D. thesis. Department of Geology, University of Tromsø

    Google Scholar 

  • Lindberg B, Berndt C, Mienert J (2007) The Fugløy Reef at 70°N; acoustic signature, geologic, geomorphologic and oceanographic setting. Int J Earth Sci 96–1, Special volume: carbonate mounds on the NW European margin: a window into earth history

    Google Scholar 

  • Lo Iacono C, Gracia, E, Ranero C, Emelianov M, Huvenne V, Bartolome R, Booth-Rea G, Prades J, MELCOR Cruise Party (2014a) The West Melilla cold water coral mounds, Eastern Alboran Sea: morphological characterization and environmental context. Deep-Sea Res II 99:316–326

    Google Scholar 

  • Lo Iacono C, Huvenne VAI, Gonzalez LV, Vertino A, Van Rooij D, Gràcia E, Ranero CR, the GATEWAYS Cruise Party (2016) Living reefs and CWC mounds in the Alboran Sea (Western Mediterranean). Holocene evolution and present-day conditions. 6th ISDSC, 11–16 September, Boston, USA

    Google Scholar 

  • Lo Iacono C, Savini A, Huvenne V, Gràcia E, 2018. Habitat mapping of cold-water corals in the Mediterranean Sea. In: Orejas C, Jimenez C (eds) Past, present and future: Mediterranean cold-water corals. Springer, Berlin

    Google Scholar 

  • Lo Iacono C, Victorero Gonzalez L, Huvenne VAI, Van Roji D, Gràcia E, Ranero C, The GATEWAYS Cruise Party (2014b) Morphology and shallow stratigraphy of the West Melilla and Cabliers CWC Mounds (Alboran Sea). Preliminary insights from the GATEWAYS MD194 Cruise. Second Deep-Water Circulation Congress, Ghent (Belgium), Sept 2014

    Google Scholar 

  • Lopes D, Hajdu D (2014) Carnivorous sponges from deep-sea coral mounds in the Campos Basin (SW Atlantic), with the description of six new species (Cladorhizidae, Poecilosclerida, Demospongiae). Mar Biol Res 10(4):329–356

    Article  Google Scholar 

  • Lowenstam HA (1950) Niagaran reefs of the Great Lakes area. J Geol 58:431–487

    Article  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  Google Scholar 

  • Lunden JJ, Georgian SE, Cordes EE (2013) Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnol Oceanogr 58:354–362

    Article  Google Scholar 

  • Marion F (1883) Esquisse d’une topographie zoologique du Golfe de Marseille. Annales Muséum Histoire Naturelle Marseille 1(1):1–108

    Google Scholar 

  • Martin CS, Giannoulaki M, De Leo F, Scardi M, Salomidi M, Knitweiss L, Pace ML, Garofalo G, Gristina M, Ballesteros E, Bavestrello G, Belluscio A, Cebrian E, Gerakaris V, Pergent G, Pergent-Martini C, Schembri PJ, Terribile K, Rizzo L, Ben Souissi J, Bonacorsi M, Guarnieri G, Krzelj M, Macic V, Punzo E, Valavanis V, Fraschetti S (2014) Coralligenous and maerl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci Rep 4:5073. doi:10.1038/srep05073

    Article  Google Scholar 

  • Martorelli E, Petroni G, Chiocci FL, Party Pantelleria Scientific (2011) Contourites offshore Pantelleria Island (Sicily Channel, Mediterranean Sea): depositional, erosional and biogenic elements. Geo-Mar Lett 31:481–493

    Article  Google Scholar 

  • Masson DG, Bett BJ, Billett DSM, Jacobs CL, Wheeler AJ, Wynn RB (2003) The origin of deep-water, coral-topped mounds in the northern Rockall Trough, Northeast Atlantic. Mar Geol 194:159–180

    Article  Google Scholar 

  • Mazzini A, Akhmetzhanov A, Monteys X, Ivanov M (2012) The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition. Geo-Mar Lett 32(3):205–225

    Article  Google Scholar 

  • Messing CG, Neumann AC, Lang JC (1990) Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios 5:15–33

    Article  Google Scholar 

  • Mienis F, De Stigter HC, White M, Duineveld G, De Haas H, Van Weering TCE (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep Sea Res Part I 54(9):1655–1674

    Article  Google Scholar 

  • Mienis F, Duineveld GCA, Davies AJ, Lavaleye MMS, Ross SW, Seim H, Bane J, Van Haren H, Bergman MJN, De Haas H, Brooke S, Van Weering TCE (2014) Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences 11:2543–2560

    Article  Google Scholar 

  • Mohn C, Rengstorf A, White M, Duineveld G, Mienis F, Soetaert K, Grehan A (2014) Linking benthic hydrodynamics and cold-water coral occurrences: a high-resolution model study at three cold-water coral provinces in the NE Atlantic. Prog Oceanogr 122:92–104

    Article  Google Scholar 

  • Montaggioni LF, Braithwaite CJR (2009) Quaternary coral reef systems. History, development processes and controlling factors. Developments in marine geology 5, Elsevier, 550 pp

    Google Scholar 

  • Montagna P, McCulloch M, Taviani M, Mazzoli C, Vendrell B (2006) Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science 312(5781):1788–1791

    Article  Google Scholar 

  • Monty CLV (1995) The rise and nature of carbonate mud-mounds: an introductory actualistic approach. In: Monty CLV, Bosence DWJ, Bridges PH, Pratt BR (eds) Carbonate mud-mounds: their origin and evolution. IAS Special Publication 23, p 11–48

    Google Scholar 

  • Moreno Navas J, Miller PL, Henry LA, Hennige SJ, Roberts JM, (2014) Ecohydrodynamics of cold-water coral reefs: a case study of the mingulay reef complex (Western Scotland). PLoS-ONE 9–5

    Google Scholar 

  • Morganti C, Cocito S, Sgorbini S (2001) Contribution of biocostructor to coralligenous assemblages exposed to sediment deposition. Biol Mar Mediterr 8:283–286

    Google Scholar 

  • Murray RJ, Murray F, Anagnostou E, Hennige S, Gori A, Henry L-A, Fox A, Kamenos N, Foster GL (2016) Cold-water corals in an era of rapid global change: are these the deep ocean’s most vulnerable ecosystems? In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future, Part VIII, pp 593–606

    Google Scholar 

  • Nalin R, Basso D, Massari F (2006): Pleistocene coralline algal build-ups (coralligène de plateau) and associated bioclastic deposits in the sedimentary cover of Cutro marine terrace (Calabria, Southern Italy) In: Pedley HM, Carannante G (eds) Coolwater carbonates: depositional systems and palaeoenvironmental control. London Geological Society Special Publications 255, pp 11–22

    Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res II 99:36–41

    Article  Google Scholar 

  • Navone A, Bianchi CN, Orrù P, Ulzega A (1992) Saggio di cartografia geomorfologica e bionomica nel parco marino di Tavolare – Capo Coda Cavallo (Sardegna Nord-orientale). Oebalia (suppl XVII):469–478

    Google Scholar 

  • Naylor LA (2005) The contribution of biogeomorphology to the emerging field of geobiology. Pal Pal Pal 219(1–2):35–51

    Google Scholar 

  • Nelson CS, Freiwald A, Titschack J, List S (2001) Lithostratigraphy and sequence architecture of temperate mixed siliciclastic-carbonate facies in a new Plio-Pleistocene section at Plimiri, Rhodes Island (Greece). Occas Rep 25:1–50 (Department of Earth Sciences, University of Waikato)

    Google Scholar 

  • Neumann AC, Kofoed JW, Keller GH (1977) Lithoherms in the Straits of Florida. Geology 5(1):4–10

    Article  Google Scholar 

  • Novosel M, Olujic G, Cocito S, Pozar-Domac A (2004) Submarine freshwater springs in the Adriatic Sea: a unique habitat for the nryozoan Pentapora fascialis. In: Moyano HI, Cancino JM, WyseJackson PN (eds) Bryozoan studies, A.A. Balkerma Publisher, Lisse

    Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, Puig P, Gili JM (2009) Distribution of the deep corals Madrepora oculata, Lophelia pertusa, Dendrophyllia cornigera, and quantification of anthropogenic impact in the Cap de Creus Canyon (North Western Mediterranean). MEPS—Marine Ecology Progress Series 397, pp 37–51

    Google Scholar 

  • OSPAR Commission (2008) Descriptions of habitats on the OSPAR list of threatened and/or declining species and habitats. Reference number 2008–7

    Google Scholar 

  • Paoli C, Montefalcone M, Morri C, Vassallo P, Bianchi CN (2016) Ecosystem functions and services of the marine animal forests. In: Rossi S, Bramanti L, Gori A, Saco del Valle CO (eds) Marine animal forests the ecology of benthic biodiversity hotspots, Springer, Switzerland, ISBN: 978-3-319-17001-5

    Google Scholar 

  • Pedley HM, Carannante G (2006) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Geological Society London Special Publications, vol 255

    Google Scholar 

  • Pérès JM (1982) Structure and dynamics of assemblages in the benthal. Mar Ecol 5(1):119–185. In: Kinne O (ed) Marine ecology: a comprehensive, integrated treatise on life in oceans and coastal waters: 5. Ocean management, vol 1, pp 119–185

    Google Scholar 

  • Pérès JM, Picard J (1951) Note sur les fonds coralligènes de la région de Marseille. Archives de zoologie expérimentale et générale 88:24–38

    Google Scholar 

  • Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditerranée. Rec Tr St Mar Endoume 31(47):1–137

    Google Scholar 

  • Raddatz J et al (2011) Paleoenvironmental reconstruction of Challenger Mound initiation in the Porcupine Seabight, NE Atlantic. Mar Geol 282:79–90

    Article  Google Scholar 

  • Rasser MW (2000) Coralline red algal limestones of the late Eocene alpine Foreland Basin in upper Austria: component analysis, facies and paleoecology. Facies 42(1):59–92. doi:10.1007/BF02562567

    Article  Google Scholar 

  • Rasser MW, Piller WE (2004) Crustose algal frameworks from the Eocene Alpine Foreland. Pal Pal Pal 206:21–39

    Google Scholar 

  • Relini G (Ed) (2009) Marine bioconstructions—nature’s architectural seascapes. Italian habitats 22. Italian Ministry of the Environment and Territorial Protection, Friuli Museum of Natural History, Comune di Udine, 87 p

    Google Scholar 

  • Remia A, Taviani M (2005) Shallow-buried Pleistocene Madrepora-dominated coral mounds on a muddy continental slope, Tuscan Archipelago, NE Tyrrhenian Sea. Facies 50:419–425

    Article  Google Scholar 

  • Riding R (2002) Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth Sci Rev 58:163–231

    Article  Google Scholar 

  • Ries JB (2006) Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology 31(3):445–458

    Article  Google Scholar 

  • Robert K, Jones D, Tyler P, Van Rooij D, Huvenne V (2015) Finding the hotspots within a biodiversity hotspot: fine-scale biological predictions within a submarine canyon using high-resolution acoustic mapping techniques. Mar Ecol 36:1256–1276

    Article  Google Scholar 

  • Robert K, Jones D, Roberts M, Huvenne V (2016) Improving predictive mapping of deep-water habitats: considering multiple model outputs and ensemble techniques. Deep Sea Res Part I Oceanogr Res Pap 80–89

    Google Scholar 

  • Roberts JM, Brown CJ, Long D, Bates CR (2005) Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats. Coral Reefs 24:654–669

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A, Cairns S (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, United Kingdom

    Book  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300

    Article  Google Scholar 

  • Rodríguez-Martínez M (2011) Mud mounds. In: Encyclopedia of geobiology, pp667–675

    Google Scholar 

  • Rogers AD (1999) The Biology of (L 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84(4):315–406

    Google Scholar 

  • Rogers AD, Baco A, Griffi H, Hart T, Hall-Spencer JM (2007) Corals on seamounts. In: Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N, Santos RS (eds) Seamounts: ecology, fisheries & conservation, Wiley-Blackwell, pp 141–169

    Google Scholar 

  • Rokoengen K, Østmo SR (1985) Shallow geology off Fedje western Norway. IKU report. 24.1459/01/85

    Google Scholar 

  • Ross SW, Quattrini AM (2007) The fish fauna associated with deep coral banks off the southeastern United States. Deep Sea Res Part I 54–6:975–1007

    Article  Google Scholar 

  • Ross RE, Howell KL (2012) Use of predictive habitat modelling to assess the distribution and extent of the current protection of ‘listed’ deep-sea habitats. Divers Distrib 19:433–445

    Article  Google Scholar 

  • Rosso A, Sanfilippo R (2009). The contribution of bryozoans and serpuloideans to coralligenous concretions from SE Sicily. In: UNEP-MAP-RAC/SPA, Proceedings of the first symposium on the coralligenous and other calcareous bio-concretions of the Mediterranean Sea, Tabarka, 15–16 Jan 2009, pp 123–128

    Google Scholar 

  • Salomidi M, Katsanevakis S, Borja Á, Braeckman U, Damalas D, Galparsoro I, Mifsud R, Mirto S, Pascual M, Pipitone C, Rabaut M, Todorova V, Vassilopoulou V, Vega Fernández T (2012) Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediteranean Mar Sci 13(1):49–88

    Article  Google Scholar 

  • Sarà M (1971) Un biotopo da proteggere: il coralligeno pugliese. Atti I Simp Naz Conserv Nat 1–25:145–151

    Google Scholar 

  • Sartoretto S (1994) Structure et dynamique d’un nouveau type de bioconstruction à Mesophyllum lichenoides (Ellis) Lemoine (Corallinales, Rhodophyta). Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la Vie 317:156–160

    Google Scholar 

  • Sartoretto S, Verlaque M, Laborel J (1996) Age of settlement and accumulation rate of submarine “coralligène” (−10 to −60 m) of the north Western Mediterranean Sea; relation to Holocene rise in sea level. Mar Geol 130:317–331

    Article  Google Scholar 

  • Savini A, Marchese F, Verdicchio G, Vertino A (2016) Submarine slide topography and the distribution of vulnerable marine ecosystems: a case study in the Ionian Sea (Eastern Mediterranean). In: Lamarche G, et al (eds) Submarine mass movements and their consequences, advances in natural and technological hazards research, vol 41. Springer, Dordrecht, pp 163–170

    Google Scholar 

  • Savini A, Vertino A, Marchese F, Beuck L, Freiwald A, Roberts JM (2014) Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability. PloS ONE 9(1):e87108

    Google Scholar 

  • Somoza L, Ercilla G, Urgorri V, León L, Medialdea T, Paredes M, Gonzaleza FJ, Nombelae MA (2014) Detection and mapping of cold-water coral mounds and living Lophelia reefs in the Galicia Bank, Atlantic NW Iberia margin. Mar Geol 349:73–90

    Article  Google Scholar 

  • Squires DF (1964) Fossil coral thickets in Wairarapa, New Zealand. J Palaeontology 38:904–915

    Google Scholar 

  • Stewart HA, Davies JS, Guinan J, Howell KL (2014) The dangeard and explorer canyons, South Western approaches UK: geology, sedimentology and newly discovered cold-water coral mini-mounds. Deep-Sea Res II 104:230–244

    Article  Google Scholar 

  • Stone RP (2006) Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions. Coral Reefs 25(2):229–238

    Article  Google Scholar 

  • Thiem O, Ravagnan E, Fosså JH, Berntsen J (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 60:207–219

    Article  Google Scholar 

  • Thierens M, Browning E, Pirlet H, Loutre MF, Dorschel B, Huvenne VAI, Titschack J, Colin C, Foubert A, Wheeler AJ (2013) Cold-water coral carbonate mounds as unique palaeo-archives: the plio-pleistocene challenger mound record (NE Atlantic). Quatern Sci Rev 73:14–30

    Article  Google Scholar 

  • Titschack J, Nelson CS, Beck T, Freiwald A, Radtke U (2008) Sedimentary evolution of a late pleistocene temperate red algal reef (Coralligène) on Rhodes, Greece: correlation with global sea–level fluctuations. Sedimentology 55:1747–1776

    Article  Google Scholar 

  • Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks KI, Rogers AD (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeogr 36:1111–1128

    Article  Google Scholar 

  • Toomey DF, Finks RM (1969) Middle Ordovician (Chazyan) mounds, southern Quebec, Canada: a summary report. New York State Geological Association, 41st annual meeting, Guidebook to field excursions. Plattsburgh, New York, pp 121–134

    Google Scholar 

  • Tracey DM, Rowden AA, Mackay KA, Compton T (2011) Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Mar Ecol Prog Ser 430:1–22

    Article  Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cycles 23:3

    Article  Google Scholar 

  • Tribot A-S, Mouquet N, Villéger S, Raymond M, Hoff F, Boissery P, Holon F, Deter J (2016) Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs. Sci Rep 6:34229. doi:10.1038/srep34229

  • UNEP-MAP (2011) Convention for the protection of the marine environment and the coastal region of the mediterranean and its protocols. MAP Special Publications http://195.97.36.231/dbases/MAPpublications/BCP_Eng.pdf. Accessed 24 July 2015. Monitoring deep Mediterranean rhodolith beds. Available from: https://www.researchgate.net/publication/287760121_Monitoring_deep_Mediterranean_rhodolith_beds. Accessed Jan 11 2017

  • UNEP-MAP-RAC/SPA (2008) Action plan for the conservation of the coralligenous and other calcareous bio-concretions in the Mediterranean Sea. Ed. RAC/SPA Tunis, 21 pp

    Google Scholar 

  • UNEP-MAP-RAC/SPA (2010) The Mediterranean Sea Biodiversity: state of the ecosystems, pressures, impacts and future priorities. In: Bazairi H, Ben Haj S, Boero F, Cebrian D, De Juan S, Limam A, Lleonart J, Torchia G, Rais C (eds) RAC/SPA, Tunis, pp 100

    Google Scholar 

  • Van Oevelen D, Duineveld GCA, Lavaleye MSS, Mienis F, Soetaert K, Heipa CHR (2009) The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol Oceanogr 54(6):1829–1844

    Article  Google Scholar 

  • Van Rooij D, De Mol B, Huvenne V, Ivanov M, Henriet JP (2003) Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar Geol 195:31–53

    Article  Google Scholar 

  • Van Rooij D, Huvenne VAI, Blamart D, Henriet JP, Wheeler A, De Haas H (2009) The Enya mounds: a lost mound-drift competition. Int J Earth Sci (Geol Rundsch) 98:849–863

    Article  Google Scholar 

  • Van Rooij D, Blamart D, De Mol L, Mienis F, Pirlet H, Wehrmann LM, Barbieri R, Maignien L, Templer SP, De Haas H, Hebbeln D, Frank N, Larmagnat S, Stadnitskaia A, Stivaletta N, Van Weering T, Zhang Y, Hamoumi N, Cnudde V, Duyck P, Henriet JP (2011) Cold-water coral mounds on the Pen Duick Escarpment, Gulf of Cadiz: the microsystems project approach. Mar Geol 282:102–117

    Article  Google Scholar 

  • Van Weering TCE, De Haas H, De Stigter HC, Lykke-Andersen H, Kouvaev I (2003) Structure and development of giant carbonate mounds at the SW and SE Rockall Trough margins, NE Atlantic Ocean. Mar Geol 198:67–81

    Article  Google Scholar 

  • Victorero L, Blamart D, Pons-Branchu E, Mavrogordato MN, Huvenne VAI (2016) Reconstruction of the formation history of the Darwin Mounds, N Rockall Trough: how the dynamics of a sandy contourite affected cold-water coral growth. Mar Geol 378:186–195

    Google Scholar 

  • Virgilio M, Airoldi L, Abbiati M (2006) Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs 25:265–272

    Article  Google Scholar 

  • Watling L, Norse EA (1997) Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv Biol 12–6:1180–1197

    Google Scholar 

  • Wienberg C, Beuck L, Heidkamp S, Hebbeln D, Freiwald A, Pfannkuche O, Monteys X (2008) Franken Mound-facies and biocoenosis mapping of a newly-discovered ‘carbonate mound’ at the West Rockall Bank, NE-Atlantic. Facies 54:1–24

    Article  Google Scholar 

  • Wild C, Wehrmann LM, Mayr C, Schöttner SI, Allers E, Lundälv T (2009) Microbial degradation of cold-water coral-derived organic matter: potential implication for organic C cycling in the water column above Tisler Reef. Aquat Biol 7:71–80

    Article  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York 471 pp

    Book  Google Scholar 

  • Wilson JB (1979) ‘Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Assoc UK 59:165–177

    Article  Google Scholar 

  • Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geodesy 30:3–35

    Article  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2014) Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgol Mar Res 201468:385

    Google Scholar 

  • Wood RA (1999) Reef evolution. Oxford University Press, UK, 414 pp

    Google Scholar 

  • Woodroff CD, Webster JM (2015) Coral reefs and sea-level change. Mar Geol 352:248–267

    Article  Google Scholar 

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nordoriental. Mémoires de l’Institut Océanographique vol. 11. Mémoires de l’Institut Océanographique, Monaco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Lo Iacono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lo Iacono, C., Savini, A., Basso, D. (2018). Cold-Water Carbonate Bioconstructions. In: Micallef, A., Krastel, S., Savini, A. (eds) Submarine Geomorphology. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-57852-1_22

Download citation

Publish with us

Policies and ethics