Skip to main content

Renal Denervation: Current Opinions and Practice

  • Chapter
  • First Online:
Cardio-Nephrology
  • 1421 Accesses

Abstract

Renal nerves play a crucial role in regulation of kidney function and blood pressure (BP) control. Compelling evidence from both animal and human studies clearly demonstrate that activation of renal sympathetic nerves plays a critical role in the pathogenesis of hypertension. Sympathetic activation is also a hallmark of chronic and end-stage kidney disease and adversely affects cardiovascular prognosis. The concept of targeting the renal nerves therapeutically was first introduced by means of surgical splanchnicectomy for treatment of severe hypertension in the early twentieth century. Recent advances in biomedical engineering allowed a more specific and direct approach to target renal sympathetic nerves using trans-vascular catheter-based approaches. Initial proof-of-concept studies demonstrated the safety of the approach and revealed substantial reductions in office blood pressure in patients with resistant hypertension. These findings and additional evidence from other mainly uncontrolled clinical studies in various high CV risk cohorts sparked substantial interest in the scientific and medical community and led to expedited introduction of catheter-based renal denervation into clinical medicine in several countries. A subsequent larger and more rigorously designed randomized clinical trial while confirming the safety of the procedure failed to demonstrate efficacy compared to a sham procedure. Clinical trial design, endpoints and their evaluation, patient selection and management both before and after renal denervation and predictors of the BP response are just some of the aspects that have been scrutinized in the aftermath of this trial (Symplicity HTN-3) and remain to be addressed in ongoing clinical studies, which will ultimately determine the future role of renal denervation in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertog SC, Sobotka PA, Sievert H. Renal denervation for hypertension. JACC Cardiovasc Interv. 2012;5:249–58.

    Article  PubMed  Google Scholar 

  2. Bell-Reuss E, Trevino D, Gottschalk C. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976;57:1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Francisco LL, Sawin LL, DiBona GF. Renal sympathetic nerve activity and the exaggerated natriuresis of the spontaneous hypertensive rat. Hypertension. 1981;3:134–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kirchheim H, Ehmke H, Persson P. Sympathetic modulation of renal hemodynamics, renin release and sodium excretion. Klin Wochenschr. 1989;67:858–64.

    Article  CAS  PubMed  Google Scholar 

  5. Dibona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    CAS  PubMed  Google Scholar 

  6. Kopp UC, Cicha MZ, Smith LA, Mulder J, Hökfelt T. Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of α1-and α2-adrenoceptors on renal sensory nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1561–72.

    Article  CAS  PubMed  Google Scholar 

  7. Vecchione C, Maffei A, Colella S, Aretini A, Poulet R, Frati G, Gentile MT, Fratta L, Trimarco V, Trimarco B. Leptin effect on endothelial nitric oxide is mediated through Akt–endothelial nitric oxide synthase phosphorylation pathway. Diabetes. 2002;51:168–73.

    Article  CAS  PubMed  Google Scholar 

  8. Lembo G, Vecchione C, Fratta L, Marino G, Trimarco V, d’Amati G, Trimarco B. Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes. 2000;49:293–7.

    Article  CAS  PubMed  Google Scholar 

  9. Kopp UC, Olson LA, DiBona GF. Renorenal reflex responses to mechano-and chemoreceptor stimulation in the dog and rat. Am J Physiol Renal Physiol. 1984;246:F67–77.

    CAS  Google Scholar 

  10. Kopp UC, Smith LA, DiBona GF. Facilitatory role of efferent renal nerve activity on renal sensory receptors. Am J Physiol Renal Physiol. 1987;253:F767–77.

    CAS  Google Scholar 

  11. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.

    Article  PubMed  Google Scholar 

  12. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.

    Article  CAS  PubMed  Google Scholar 

  13. Rao F, Wessel J, Wen G, Zhang L, Rana BK, Kennedy BP, Greenwood TA, Salem RM, Chen Y, Khandrika S, Hamilton BA, Smith DW, Holstein-Rathlou NH, Ziegler MG, Schork NJ, O’Connor DT. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension. 2007;49:1015–31.

    Article  CAS  PubMed  Google Scholar 

  14. Page IH, Heuer GJ. The effect of renal denervation on patients suffering from nephritis. J Clin Invest. 1935;14:443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimson KS, Orgain ES, Anderson B, Broome RA Jr, Longino FH. Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann Surg. 1949;129:850.

    Article  PubMed Central  Google Scholar 

  16. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152:1501–4.

    Article  CAS  PubMed  Google Scholar 

  17. Katholi RE, Winternitz SR, Oparil S. Decrease in peripheral sympathetic nervous system activity following renal denervation or unclipping in the one-kidney one-clip Goldblatt hypertensive rat. J Clin Invest. 1982;69:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bello-Reuss E, Colindres RE, Pastoriza-Munoz E, Mueller RA, Gottschalk CW. Effects of acute unilateral renal denervation in the rat. J Clin Invest. 1975;56:208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nozawa T, Igawa A, Fujii N, Kato B, Yoshida N, Asanoi H, Inoue H. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessels. 2002;16:51–6.

    Article  PubMed  Google Scholar 

  20. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  21. Symplicity HTNI. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57:911–7.

    Article  Google Scholar 

  22. Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383:622–9.

    Article  PubMed  Google Scholar 

  23. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376:1903–9.

    Article  PubMed  Google Scholar 

  24. Esler MD, Krum H, Schlaich M, Schmieder RE, Bohm M, Sobotka PA, Symplicity HTNI. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126:2976–82.

    Article  CAS  PubMed  Google Scholar 

  25. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR and Bakris GL. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Google Scholar 

  26. Materson BJ, Reda DJ, Cushman WC, Massie BM, Freis ED, Kochar MS, Hamburger RJ, Fye C, Lakshman R, Gottdiener J. Single-drug therapy for hypertension in men—A comparison of six antihypertensive agents with Placebo. N Engl J Med. 1993;328:914–21.

    Article  CAS  PubMed  Google Scholar 

  27. Blake WD, Jurf AN. Renal sodium reabsorption after acute renal denervation in the rabbit. J Physiol. 1968;196:65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bello-Reuss E, Pastoriza-Munoz E, Colindres RE. Acute unilateral renal denervation in rats with extracellular volume expansion. Am J Physiol. 1977;232:F26–32.

    CAS  PubMed  Google Scholar 

  29. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, Esler MD, Schlaich MP. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.

    Article  CAS  PubMed  Google Scholar 

  30. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, Lambert GW, Esler MD, Schlaich MP. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension. 2014;64:118–24. doi:10.1161/HYPERTENSIONAHA.113.03098.

    Article  CAS  PubMed  Google Scholar 

  31. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, Midulla M, Mounier-Vehier C, Courand PY, Lantelme P, Denolle T, Dourmap-Collas C, Trillaud H, Pereira H, Plouin PF, Chatellier G. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385(9981):1957–65.

    Article  PubMed  Google Scholar 

  32. Desch S, Okon T, Heinemann D, Kulle K, Rohnert K, Sonnabend M, Petzold M, Muller U, Schuler G, Eitel I, Thiele H, Lurz P. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65(6):1202–8.

    Article  CAS  PubMed  Google Scholar 

  33. Fadl Elmula FE, Hoffmann P, Larstorp AC, Fossum E, Brekke M, Kjeldsen SE, Gjonnaess E, Hjornholm U, Kjaer VN, Rostrup M, Os I, Stenehjem A, Hoieggen A. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension. 2014;63:991–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rosa J, Widimsky P, Tousek P, Petrak O, Curila K, Waldauf P, Bednar F, Zelinka T, Holaj R, Strauch B, Somloova Z, Taborsky M, Vaclavik J, Kocianova E, Branny M, Nykl I, Jiravsky O, Widimsky J Jr. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension. 2015;65(2):407–13.

    Article  CAS  PubMed  Google Scholar 

  35. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, Linz D, Schmieder R, Rump LC, Kindermann I, Sobotka PA, Krum H, Scheller B, Schlaich M, Laufs U, Bohm M. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60:419–24.

    Article  CAS  PubMed  Google Scholar 

  36. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, Sobotka PA, Bohm M, Cremers B, Esler MD, Schlaich MP. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23:1250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kiuchi MG, Maia GL, de Queiroz Carreira MA, Kiuchi T, Chen S, Andrea BR, Graciano ML, Lugon JR. Effects of renal denervation with a standard irrigated cardiac ablation catheter on blood pressure and renal function in patients with chronic kidney disease and resistant hypertension. Eur Heart J. 2013;34(28):2114–21.

    Google Scholar 

  38. Ott C, Mahfoud F, Schmid A, Ditting T, Veelken R, Ewen S, Ukena C, Uder M, Bohm M, Schmieder RE. Improvement of albuminuria after renal denervation. Int J Cardiol. 2014;173:311–5.

    Article  PubMed  Google Scholar 

  39. Masuo K, Mikami H, Ogihara T, Tuck M. Hormonal mechanisms in blood pressure reduction during hemodialysis in patients with chronic renal failure. Hypertens Res. 1995;18(Suppl 1):S201–3.

    Article  CAS  PubMed  Google Scholar 

  40. Masuo K, Katsuya T, Sugimoto K, Kawaguchi H, Rakugi H, Ogihara T, Tuck ML. High plasma norepinephrine levels associated with beta2-adrenoceptor polymorphisms predict future renal damage in nonobese normotensive individuals. Hypertens Res. 2007;30:503–11.

    Article  CAS  PubMed  Google Scholar 

  41. Mena-Martin FJ, Martin-Escudero JC, Simal-Blanco F, Carretero-Ares JL, Arzua-Mouronte D, Castrodeza Sanz JJ. Influence of sympathetic activity on blood pressure and vascular damage evaluated by means of urinary albumin excretion. J Clin Hypertens (Greenwich). 2006;8:619–24.

    Article  CAS  Google Scholar 

  42. Ott C, Mahfoud F, Schmid A, Toennes SW, Ewen S, Ditting T, Veelken R, Ukena C, Uder M, Bohm M, Schmieder RE. Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J Hypertens. 2015;33:1261–6.

    Article  CAS  PubMed  Google Scholar 

  43. Lohmeier TE, Iliescu R, Liu B, Henegar JR, Maric-Bilkan C, Irwin ED. Systemic and renal-specific sympathoinhibition in obesity hypertension. Hypertension. 2012;59:331–8.

    Article  CAS  PubMed  Google Scholar 

  44. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, Esler MD, Lambert GW. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20:933–9.

    Article  PubMed  Google Scholar 

  45. Eikelis N, Hennebry SC, Lambert GW, Schlaich MP. Does renalase degrade catecholamines? Kidney Int. 2011;79:1380 author reply 1380–1.

    Article  CAS  PubMed  Google Scholar 

  46. Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, Desir GV. Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation. 2008;117:1277–82.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang W, Guo Y, Tan L, Tang X, Yang Q, Yang K. Impact of renal denervation on renalase expression in adult rats with spontaneous hypertension. Exp Ther Med. 2012;4:493–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, Bohm M, Lambert EA, Krum H, Sobotka PA, Schmieder RE, Ika-Sari C, Eikelis N, Straznicky N, Lambert GW, Esler MD. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013;168(3):2214–20.

    Google Scholar 

  49. Di Daniele N, De Francesco M, Violo L, Spinelli A, Simonetti G. Renal sympathetic nerve ablation for the treatment of difficult-to-control or refractory hypertension in a haemodialysis patient. Nephrol Dial Transplant. 2012;27:1689–90.

    Article  PubMed  Google Scholar 

  50. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  51. Mancia G. Sympathetic activation in congestive heart failure. Eur Heart J. 1990;11:3–11.

    Article  PubMed  Google Scholar 

  52. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation. 1997;95:169–75.

    Article  CAS  PubMed  Google Scholar 

  53. Pettersson A, Hedner J, Hedner T. Renal interaction between sympathetic activity and ANP in rats with chronic ischaemic heart failure. Acta Physiol Scand. 1989;135:487–92.

    Article  CAS  PubMed  Google Scholar 

  54. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, Hoppe UC. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

    Article  PubMed  Google Scholar 

  55. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel J-H, Fries P, Dreysse S, Wellnhofer E, Schneider G. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014:ehu093.

    Google Scholar 

  56. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, Shirokova N, Karaskov A, Mittal S, Steinberg JS. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  57. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger H-R, Wirth K, Böhm M. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.

    Article  CAS  PubMed  Google Scholar 

  58. McLellan AJ, Schlaich MP, Taylor AJ, Prabhu S, Hering D, Hammond L, Marusic P, Duval J, Sata Y, Ellims A. Reverse cardiac remodelling following renal denervation-atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm. 2015.

    Google Scholar 

  59. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, Hamady M, Hughes AD, Sever PS, Sobotka PA, Francis DP. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162:189–92.

    Article  PubMed  Google Scholar 

  60. Ukena C, Bauer A, Mahfoud F, Schreieck J, Neuberger HR, Eick C, Sobotka PA, Gawaz M, Bohm M. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol. 2012;101:63–7.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

MS is supported by a Senior Research Fellowship from the National Health and Medical Research Council (NHMRC) of Australia. This research was funded in part by the grants from the National Health and Research Council of Australia (NHMRC) and the Victorian Government’s Operational Infrastructure Support Program. MS is an investigator in studies sponsored by Medtronic and has received honoraria and lecture fees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus P. Schlaich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schlaich, M.P. (2017). Renal Denervation: Current Opinions and Practice. In: Rangaswami, J., Lerma, E., Ronco, C. (eds) Cardio-Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-319-56042-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56042-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56040-3

  • Online ISBN: 978-3-319-56042-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics