Skip to main content

Ultraviolet Radiations: Skin Defense-Damage Mechanism

  • Chapter
  • First Online:
Ultraviolet Light in Human Health, Diseases and Environment

Abstract

UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320–400 nm), UV-B (280–320 nm) and UV-C (200–280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3–4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raymond R, Suskind RR (1977) Environment and the skin. Environ Health Perspect 20:27–37

    Article  Google Scholar 

  2. Emmett EA (1975) Occupational skin cancer: a review. J Occup Med 17:44

    Article  CAS  PubMed  Google Scholar 

  3. Fitzpatrick TB et al (1974) An introduction to the problem of normal and abnormal responses of an’s skin to solar radiation. In: Pathak MA et al (eds) Sunlight and man: normal and abnormal photobiologic responses. University of Tokyo Press, Tokyo, pp 3–14

    Google Scholar 

  4. Suskind RR (1974) Ultraviolet radiation carcinogenesis: UVR and atmospheric contaminants. In: Pathak MA et al (eds) Sunlight and man: normal and abnormal photobiologic responses. University of Tokyo Press, Tokyo, pp 285–298

    Google Scholar 

  5. Emmett EA (1973) Ultraviolet radiation as a cause of skin tumors. Crit Rev Toxicol 2:211

    Article  CAS  Google Scholar 

  6. Suskind RR, Horton AW (1959) Etiologic factors and the pathogenesis of premalignant and malignant lesions. In: Rothman S (ed) The human integument, normal and abnormal. American Association for the Advancement of Science, Washington, DC, pp 171–192

    Google Scholar 

  7. Emmett EA (1974) Occupational skin cancer: a review. J Occup Med 17:44. 1975

    Article  Google Scholar 

  8. Epstein JH (1974) Xeroderma pigmentosum and UVL carcinogenesis. In: Pathak MA et al (eds) Sunlight and Man: Normal and Abnormal Photobiologic Responses. University of Tokyo Press, Tokyo, pp 299–315

    Google Scholar 

  9. Epstein JH (1970) Ultraviolet carcinogenesis. In: Giese AC (ed) Photophysiology, vol 5. Academic Press, New York, pp 235–273

    Google Scholar 

  10. Amstrong BK, Holman CDJ (1987) Malignant melanoma of the skin. Bull World Health Organ 65:245–252

    Google Scholar 

  11. Crombie IK (1979) Racial differences in melanoma incidence. Br J Cancer 40:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sober AJ et al (1979) The melanin pigmentary system in man. In: Clark W et al (eds) Human malignant melanoma. Grune & Stratton, New York, pp 3–13

    Google Scholar 

  13. Pathak MA (1982) The role of natural photoprotective agents in human skin. In: Pathak M et al (eds) Sunlight and man. University of Tokyo Press, Tokyo, pp 725–750

    Google Scholar 

  14. Lee JAH (1982) Melanoma. In: Schottenfeld D et al (eds) Cancer epidemiology and prevention. W. B. Saunders, Philadelphia, pp 984–995

    Google Scholar 

  15. Holman, CDJ et al (1984) Pigmentary traits, ethnic origin, benign nevi, and family history as risk factors for cutaneous malignant melanoma. J Natl Cancer Inst 72: 257–266

    Google Scholar 

  16. Beitner H et al (1981) Further evidence for increased light sensitivity in patients with malignant melanoma. Br J Dermatol 104:289–294

    Article  CAS  PubMed  Google Scholar 

  17. World Health Organization (1979) Ultraviolet radiation Geneva. Environ Health Criter 14

    Google Scholar 

  18. Freeman RG (1978) Action spectrum for ultraviolet carcinogenesis. Natl Cancer Inst Monogr 50:27–29

    Google Scholar 

  19. Semenza JC, Weasel LH (1997) Molecular epidemiology in environmental health: the potential of tumor suppressor gene p53 as a biomarker. Environ Health Perspect 105 (1):155–163

    Google Scholar 

  20. Brash DE, Rudolph JA, Simon JA, Lin A, GJ MK, Baden HP, Halperin AJ, Ponten J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88:10124–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moles JP, Moyret C, Guillot B, Jeanteur P, Guilhou JJ, Theillet C, Basset-Seguin N (1993) p53 gene mutations in human epithelial skin cancers. Oncogene 8:583–588

    CAS  PubMed  Google Scholar 

  22. Ziegler A, Leffell DJ, Kunala S, Sharma HW, Gailani M, Simon JA, Halperin AJ, Baden H, Shapiro PE, Bale AE, Brash DE (1993) Mutation hot spots due to sunlight in the p53 geneof nonmelanoma skin cancers. Proc Natl Acad Sci U S A 90:4216–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Council on Scientific Affairs (1989) Harmful effects of ultraviolet radiation. JAMA 262:380–384

    Article  Google Scholar 

  24. Stretch JR, Gatter KC, Ralfkiaer E, Lane DP, Harris AL (1991) Expression of mutant p53 in melanoma. Cancer Res 51:5976–5979

    CAS  PubMed  Google Scholar 

  25. Reid TM, Loeb LA (1992) Mutagenic specificity of oxygen radicals produced by human leukemia cells. Cancer Res 52:1082–1086

    CAS  PubMed  Google Scholar 

  26. Reid TM, Loeb LA (1993) Tandem double CC−+TT mutations are produced by reactive oxygen species. Proc Natl Acad Sci U S A 90:3904–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakazawa H, English D, Randell P, Nakazawa K, Martel N, Armstrong BK, Yamasaki H (1994) UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci U S A 91:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Endoh I, Di Girolamo N, Hampartzoumian T, Cameron B, Geczy CL, Tedla N (2007) Ultraviolet B irradiation selectively increases the production of interleukin-8 in human cord blood-derived mast cells. British society for immunology. Clin Exp Immunol 148:161–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walsh LJ (1995) Ultraviolet B. Irradiation of skin induces mast cell degranulation and release of tumour necrosis factor-alpha. Immunol Cell Biol 73:226–233

    Article  CAS  PubMed  Google Scholar 

  30. Hawk JL, Murphy GM, Holden CA (1988) The presence of neutrophils in human cutaneous ultraviolet-B inflammation. Br J Dermatol 118:27–30

    Article  CAS  PubMed  Google Scholar 

  31. Rhodes LE, Joyce M, West DC, Strickland I, Friedmann PS (1996) Comparison of changes in endothelial adhesion molecule expression following UVB irradiation of skin and a human dermal microvascular cell line (HMEC-1). Photodermatol Photoimmunol Photomed 12:114–121

    Article  CAS  PubMed  Google Scholar 

  32. Dosquet C, Weill D, Wautier JL (1992) Molecular mechanism of blood monocyte adhesion to vascular endothelial cells. Nouv Rev Fr Hematol 34:55–59

    Google Scholar 

  33. Heck DE, Vetrano AM, Mariano TM, Laskin JD (2003) UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem 278:22432–22436

    Article  CAS  PubMed  Google Scholar 

  34. Schwarz T (2002) Photoimmunosuppression. Photodermatol Photoimmunol Photomed 18:141–145

    Article  CAS  PubMed  Google Scholar 

  35. Di Nuzzo S, de Rie MA, van der Loos CM, Bos JD, Teunissen MB (1966) Solar-simulated ultraviolet irradiation induces selective influx of CD4+ T lymphocytes in normal human skin. Photochem Photobiol 64:988–993

    Article  Google Scholar 

  36. Kulms D, Schwarz T (2002) Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem Pharmacol 64:837–841

    Article  CAS  PubMed  Google Scholar 

  37. Duthie MS, Kimber I, Norval M (1999) The effects of ultraviolet radiation on the human immune system. Br J Dermatol 140:995–1009

    Google Scholar 

  38. Nicolo C, Tomassini B, Rippo MR, Testi R (2001). UVB-induced apoptosis of human dendritic cells: contribution by caspase-dependent and caspase-independent pathways. Blood 97:1803–1808

    Google Scholar 

  39. Horio T, Miyauchi-Hashimoto H, Okamoto H (2005) DNA damage initiates photobiologic reactions in the skin. Photochem Photobiol Sci 4:709–714

    Article  CAS  PubMed  Google Scholar 

  40. Strickland I, Rhodes LE, Flanagan BF, Friedmann PS (1997) TNF-alpha and IL-8 are upregulated in the epidermis of normal human skin after UVB exposure: correlation with neutrophil accumulation and E-selectin expression. J Invest Dermatol 108:763–768

    Article  CAS  PubMed  Google Scholar 

  41. Saade NE, Nasr IW, Massaad CA, Safieh-Garabedian B, Jabbur SJ, Kanaan SA (2000) Modulation of ultraviolet-induced hyperalgesia and cytokine upregulation by interleukins 10 and 13. Br J Pharmacol 131:1317–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ding W, Beissert S, Deng L et al (2003) Altered cutaneous immune parameters in transgenic mice overexpressing viral IL-10 in the epidermis. J Clin Invest 111:1923–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mohamadzadeh M, Takashima A, Dougherty I, Knop J, Bergstresser PR, Cruz PD Jr (1995) Ultraviolet B radiation up-regulates the expression of IL-15 in human skin. J Immunol 155:4492–4496

    CAS  PubMed  Google Scholar 

  44. Gordon JR, Burd PR, Galli SJ (1990) Mast cells as a source of multifunctional cytokines. Immunol Today 11:458–464

    Article  CAS  PubMed  Google Scholar 

  45. Parikh SA, Cho SH, Oh CK (2003) Preformed enzymes in mast cell granules and their potential role in allergic rhinitis. Curr Allergy Asthma Rep 3:266–272

    Article  PubMed  Google Scholar 

  46. Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381:77–80

    Article  CAS  PubMed  Google Scholar 

  47. Clydesdale GJ, Dandie GW, Muller HK (2001) Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 79:547–568

    Article  CAS  PubMed  Google Scholar 

  48. Raja KS, Lori AC, Robert PD (2009) The benefits and risks of ultraviolet (UV) tanning and its alternatives: the role of prudent sun exposure. Dermatol Clin 27:149–156

    Article  CAS  Google Scholar 

  49. Robinson JK, Kim J, Rosenbaum S et al (2008) Indoor tanning knowledge, attitudes, and behavior among young adults from 1988–2007. Arch Dermatol 144:484–488

    PubMed  Google Scholar 

  50. Wirz-Justice A, Graw P, Krauchi K et al (1996) ‘Natural’ light treatment of seasonal affective disorder. J Affect Disord 37:109–120

    Article  CAS  PubMed  Google Scholar 

  51. Hillhouse J, Stapleton J, Turrisi R (2005) Association of frequent indoor UV tanning with seasonal affective disorder. Arch Dermatol 141:1465

    PubMed  Google Scholar 

  52. Cripps DJ (1981) Natural and artificial photoprotection. J Invest Dermatol 77:154–157

    Article  CAS  PubMed  Google Scholar 

  53. Nash JF, Tanner PR, Matts PJ (2006) Ultraviolet a radiation: testing and labeling for sunscreen products. Dermatol Clin 24:63–74

    Article  CAS  PubMed  Google Scholar 

  54. Tangpricha V, Pearce EN, Chen TC et al (2002) Vitamin D insufficiency among free-living healthy young adults. Am J Med 112:659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giovannucci E (2007) Epidemiological evidence for vitamin D and colorectal cancer. J Bone Miner Res 22(2):V81–V85

    Google Scholar 

  56. Mitka M (2008) Vitamin D deficits may affect heart health. JAMA 299:753–754

    Article  CAS  PubMed  Google Scholar 

  57. Wang TJ, Pencina MJ, Booth SL et al (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117:503–511

    Article  CAS  PubMed  Google Scholar 

  58. Cranney A, Horsley TO’D et al (2007) Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess 158:1–235

    Google Scholar 

  59. Li H, Stampfer MJ, Hollis JB et al (2007) A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 4(3), e103

    Google Scholar 

  60. Dobnig H, Pilz S, Scharnagl H et al (2008) Independent association of low serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels with all-cause and cardiovascular mortality. Arch Intern Med 168:1340–1349

    Article  CAS  PubMed  Google Scholar 

  61. Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8

    Article  CAS  PubMed  Google Scholar 

  62. Wejse C, Olesen R, Rabna P et al (2007) Serum 25-hydroxyvitamin D in a west African population of tuberculosis patients and unmatched healthy controls. Am J Clin Nutr 86:1376–1383

    CAS  PubMed  Google Scholar 

  63. Heaney RP (2005) The vitamin D requirement in health and disease. J Steroid Biochem Mol Biol 97:13–19

    Article  CAS  PubMed  Google Scholar 

  64. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87:1080S–1086S

    CAS  PubMed  Google Scholar 

  65. Holick MF, MacLaughlin JA, Doppelt SH (1981) Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science 211:590–593

    Article  CAS  PubMed  Google Scholar 

  66. Webb AR, Engelsen O (2008) Ultraviolet exposure scenarios: risks of erythema from recommendations on cutaneous vitamin D synthesis. Adv Exp Med Biol 624:72–85

    Article  CAS  PubMed  Google Scholar 

  67. Webb AR, Engelsen O (2006) Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochem Photobiol 82:1697–1703

    Article  CAS  PubMed  Google Scholar 

  68. Tangpricha V, Turner A, Spina C et al (2004) Tanning is associated with optimal vitamin D status (serum 25-hydroxyvitamin D concentration) and higher bone mineral density. Am J Clin Nutr 80:1645–1649

    CAS  PubMed  Google Scholar 

  69. Maverakis E, Miyamura Y, Bowen MP, Correa G, Ono Y, Goodarzi H (2010) Light, including ultraviolet. J Autoimmun 34:J247–J257

    Article  CAS  PubMed  Google Scholar 

  70. Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656

    Article  CAS  PubMed  Google Scholar 

  71. Tommasi S, Denissenko M, Pfeifer G (1997) Sunlight induces pyrimidine dimers preferentially at 5- methylcytosine bases. Cancer Res 57:4727–4730

    CAS  PubMed  Google Scholar 

  72. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994) Sunburn and p53 in the onset of skin cancer. Nature 372:773–777

    Article  CAS  PubMed  Google Scholar 

  73. Eller MS, Yaar M, Gilchrest BA (1994) DNA damage and melanogenesis. Nature 372:413–414

    Article  CAS  PubMed  Google Scholar 

  74. Lo HL, Nakajima S, Ma L, Walter B, Yasui A, Ethell DW, Owen LB (2005) Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest. BMC Cancer 5:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Leverkus M, Yaar M, Gilchrest BA (1997) Fas/Fas ligand interaction contributes to UV-induced apoptosis in human keratinocytes. Exp Cell Res 232:255–262

    Article  CAS  PubMed  Google Scholar 

  76. Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140:171–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olson RL, Everett MA (1975) Epidermal apoptosis: cell deletion by phagocytosis. J Cutan Pathol 2:53–57

    Article  CAS  PubMed  Google Scholar 

  78. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van Nieuwenhuijze AE, van Lopik T, Smeenk RJ, Aarden LA (2003) Time between onset of apoptosis and release of nucleosomes from apoptotic cells: putative implications for systemic lupus erythematosus. Ann Rheum Dis 62:10–14

    Article  PubMed  PubMed Central  Google Scholar 

  80. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 25:177–181

    Article  CAS  PubMed  Google Scholar 

  81. Botto M (1998) C1q knock-out mice for the study of complement deficiency in autoimmune disease. Exp Clin Immunogenet 15:231–234

    Article  CAS  PubMed  Google Scholar 

  82. Furukawa F, Kashihara-Sawami M, Lyons MB, Norris DA (1990) Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/la is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus. J Invest Dermatol 94:77–85

    Article  CAS  PubMed  Google Scholar 

  83. Meyskens FL Jr, Farmer P, Fruehauf JP (2001) Redox regulation in human melanocytes and melanoma. Pigment Cell Res 14:148–154

    Article  CAS  PubMed  Google Scholar 

  84. Schulz I, Mahler HC, Boiteux S, Epe B (2000) Oxidative DNA base damage induced by singlet oxygen and photosensitization: recognition by repair endonucleases and mutagenicity. Mutat Res 461:145–156

    Article  CAS  PubMed  Google Scholar 

  85. Nishimura S (2002) Involvement of mammalian OGG1 (MMH) in excision of the 8-hydroxyguanine residue in DNA. Free Radic Biol Med 32:813–821

    Article  CAS  PubMed  Google Scholar 

  86. Kunisada M, Sakumi K, Tominaga Y, Budiyanto A, Ueda M, Ichihashi M, Nakabeppu Y, Nishigori C (2005) 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 65:6006–6010

    Article  CAS  PubMed  Google Scholar 

  87. Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, Jones AM (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprInt. mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci U S A 101:4954–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA (1999) In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc 4:91–96

    Article  CAS  PubMed  Google Scholar 

  89. Song X, Mosby N, Yang J, Xu A, Abdel-Malek Z, Kadekaro AL (2009) Alpha-MSH activates immediate defense responses to UV-induced oxidative stress in human melanocytes. Pigment Cell Melanoma Res 22:809–818

    Article  CAS  PubMed  Google Scholar 

  90. Kadekaro AL, Chen J, Yang J, Chen S, Jameson J, Swope VB, Cheng T, Kadakia M, Abdel-Malek Z (2012) Alpha-melanocyte-stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes. Mol Cancer Res 10:778–786

    Article  CAS  PubMed  Google Scholar 

  91. Krol ES, Kramer-Stickland KA, Liebler DC (2000) Photoprotective actions of topically applied vitamin E. Drug Metab Rev 32:413–420

    Article  CAS  PubMed  Google Scholar 

  92. Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. Invest Dermatol 126:2565–2575

    Article  CAS  Google Scholar 

  93. Kokot A, Metze D, Mouchet N, Galibert MD, Schiller M, Luger TA, Bohm M (2009) Alpha-melanocyte-stimulating hormone counteracts the suppressive effect of UVB on Nrf2 and Nrf-dependent gene expression in human skin. Endocrinology 150:3197–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cleaver JE, Crowley E (2002) UV damage, DNA repair and skin carcinogenesis. Front Biosci 7:d1024–d1043

    CAS  PubMed  Google Scholar 

  95. Wei Q, Lee JE, Gershenwald JE, Ross MI, Mansfield PF, Strom SS, Wang LE, Guo Z, Qiao Y, Amos CI et al (2003) Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J Natl Cancer Inst 95:308–315

    Article  CAS  PubMed  Google Scholar 

  96. Sarasin A (1999) The molecular pathways of ultraviolet-induced carcinogenesis. Mutat Res 428:5–10

    Article  CAS  PubMed  Google Scholar 

  97. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  98. Kanjilal S, Pierceall WE, Cummings KK, Kripke ML, Ananthaswamy HN (1993) High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: evidence for strand bias and tumor heterogeneity. Cancer Res 53:2961–2964

    CAS  PubMed  Google Scholar 

  99. Sato M, Nishigori C, Zghal M, Yagi T, Takebe H (1993) Ultraviolet-specific mutations in p53 gene in skin tumors in xeroderma pigmentosum patients. Cancer Res 53:2944–2946

    CAS  PubMed  Google Scholar 

  100. Daya-Grosjean L, Dumaz N, Sarasin A (1995) The specificity of p53 mutation spectra in sunlight induced human cancers. J Photochem Photobiol B 28:115–124

    Article  CAS  PubMed  Google Scholar 

  101. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C et al (2012) A landscape of driver mutations in melanoma. Cell 150:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nouspikel T (2009) DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell Mol Life Sci 66:994–1009

    Article  CAS  PubMed  Google Scholar 

  103. DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Invest Dermatol 132:785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Daya-Grosjean L (2008) Xeroderma pigmentosum and skin cancer. Adv Exp Med Biol 637:19–27

    Article  CAS  PubMed  Google Scholar 

  105. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  106. Reed SH (2005) Nucleotide excision repair in chromatin: the shape of things to come. DNA Repair 4:909–918

    Article  CAS  PubMed  Google Scholar 

  107. Leibeling D, Laspe P, Emmert S (2006) Nucleotide excision repair and cancer. J Mol Histol 37:225–238

    Article  CAS  PubMed  Google Scholar 

  108. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ (1995) Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 11:328–330

    Article  CAS  PubMed  Google Scholar 

  109. Valverde P, Healy E, Sikkink S, Haldane F, Thody AJ, Carothers A, Jackson IJ, Rees JL (1996) The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Genet 5:1663–1666

    Article  CAS  PubMed  Google Scholar 

  110. Koppula SV, Robbins LS, Lu D, Baack E, White CR Jr, Swanson NA, Cone RD (1997) Identification of common polymorphisms in the coding sequence of the human MSH receptor (MCIR) with possible biological effects. Hum Mutat 9:30–36

    Article  CAS  PubMed  Google Scholar 

  111. Rees JL, Healy E (1997) Melanocortin receptors, red hair, and skin cancer. J Investig Dermatol Symp Proc 2:94–98

    Article  CAS  PubMed  Google Scholar 

  112. Abdel-Malek ZA, Kadekaro AL, Kavanagh RJ, Todorovic A, Koikov LN, JC MN, Jackson PJ, Millhauser GL, Schwemberger S, Babcock G, Haskell-Luevano C, Knittel JJ (2006) Melanoma prevention strategy based on using tetrapeptide alpha-MSH analogs that protect human melanocytes from UV-induced DNA damage and cytotoxicity. FASEB J 20:1561–1563

    Google Scholar 

  113. Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, Calista D, Kanetsky PA, Pinkel D, Bastian BC (2006) MC1R germline variants confer risk for BRAF-mutant melanoma. Sci Signal 313:521

    CAS  Google Scholar 

  114. Roberts DW, Newton RA, Leonard JH, Sturm RA (2008) Melanocytes expressing MC1R polymorphisms associated with red hair color have altered MSH-ligand activated pigmentary responses in coculture with keratinocytes. J Cell Physiol 215:344–355

    Article  CAS  PubMed  Google Scholar 

  115. Abdel-Malek ZA, Ruwe A, Kavanagh-Starner R, Kadekaro AL, Swope V, Haskell-Luevano C, Koikov L, Knittel JJ (2009) Alpha-MSH tripeptide analogs activate the melanocortin 1 receptor and reduce UV-induced DNA damage in human melanocytes. Pigment Cell Melanoma Res 22:635–644

    Google Scholar 

  116. Suzuki I, Cone RD, Im S, Nordlund J, Abdel-Malek ZA (1996) Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology 137:1627–1633

    Article  CAS  PubMed  Google Scholar 

  117. Sturm RA, Duffy DL, Box NF, Newton RA, Shepherd AG, Chen W, Marks LH, Leonard JH, Martin NG (2003) Genetic association and cellular function of MC1R variant alleles in human pigmentation. Ann N Y Acad Sci 994:348–358

    Article  CAS  PubMed  Google Scholar 

  118. Kadekaro AL, Kanto H, Kavanagh R, Abdel-Malek ZA (2003) Significance of the melanocortin 1 receptor in regulating human melanocyte pigmentation, proliferation, and survival. Ann N Y Acad Sci 994:359–365

    Article  CAS  PubMed  Google Scholar 

  119. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142:827–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Newton RA, Roberts DW, Leonard JH, Sturm RA (2007) Human melanocytes expressing MC1R variant alleles show impaired activation of multiple signaling pathways. Peptides 28:2387–2396

    Article  CAS  PubMed  Google Scholar 

  121. Hauser JE, Kadekaro AL, Kavanagh RJ, Wakamatsu K, Terzieva S, Schwemberger S, Babcock G, Rao MB, Ito S, Abdel-Malek ZA (2006) Melanin content and MC1R function independently affect UVR-induced DNA damage in cultured human melanocytes. Pigment Cell Res 19:303–314

    Article  CAS  PubMed  Google Scholar 

  122. Sturm RA (2002) Skin colour and skin cancer—MC1R, the genetic link. Melanoma Res 12:405–416

    Article  CAS  PubMed  Google Scholar 

  123. Beaumont KA, Shekar SN, Cook AL, Duffy DL, Sturm RA (2008) Red hair is the null phenotype of MC1R. Hum Mutat 29:E88–E94

    Article  PubMed  Google Scholar 

  124. Landi MT, Kanetsky PA, Tsang S, Gold B, Munroe D, Rebbeck T, Swoyer J, Ter-Minassian M, Hedayati M, Grossman L et al (2005) MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J Natl Cancer Inst 97:998–1007

    Article  CAS  PubMed  Google Scholar 

  125. Fargnoli MC, Spica T, Sera F, Pellacani G, Chiarugi A, Seidenari S, Carli P, Chimenti S, Peris K (2006) Re: MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J Natl Cancer Inst 98:144–145

    Article  CAS  PubMed  Google Scholar 

  126. Wong SS, Ainger SA, Leonard JH, Sturm RA (2012) MC1R variant allele effects on UVR-induced phosphorylation of p38, p53, and DDB2 repair protein responses in melanocytic cells in culture. J Invest Dermatol 132:1452–1461

    Article  CAS  PubMed  Google Scholar 

  127. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14:12222–12248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ahmad SI, Hanaoka F (eds) (2008) Molecular mechanisms of Xeroderma pigmentosum. In: Advances in experimental medicine and biology. Springer Science + Business Media, LLC, Landes Bioscience. ISBN: 978–0–387-09598-1

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Parveen Kumar for excellent assistance in editing and reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Mohania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohania, D. et al. (2017). Ultraviolet Radiations: Skin Defense-Damage Mechanism. In: Ahmad, S. (eds) Ultraviolet Light in Human Health, Diseases and Environment. Advances in Experimental Medicine and Biology, vol 996. Springer, Cham. https://doi.org/10.1007/978-3-319-56017-5_7

Download citation

Publish with us

Policies and ethics