Skip to main content

On Multiplicative Independent Bases for Canonical Number Systems in Cyclotomic Number Fields

  • Chapter
  • First Online:
Number Theory – Diophantine Problems, Uniform Distribution and Applications

Abstract

In the present paper we are interested in number systems in the ring of integers of cyclotomic number fields in order to obtain a result equivalent to Cobham’s theorem. For this reason we first search for potential bases. This is done in a very general way in terms of canonical number systems. In a second step we analyse pairs of bases in view of their multiplicative independence. In the last part we state an appropriate variant of Cobham’s theorem.

Dedicated to Professor Robert F. Tichy on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Adamczewski, J. Bell, An analogue of Cobham’s theorem for fractals. Trans. Am. Math. Soc. 363(8), 4421–4442 (2011). MR2792994

    Google Scholar 

  2. S. Akiyama, A. Pethő, On canonical number systems. Theor. Comput. Sci. 270(1–2), 921–933 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Akiyama, H. Rao, New criteria for canonical number systems. Acta Arith. 111(1), 5–25 (2004). MR2038059 (2005d:11007)

    Google Scholar 

  4. S. Akiyama, H. Brunotte, A. Pethő, Cubic CNS polynomials, notes on a conjecture of W.J. Gilbert. J. Math. Anal. Appl. 281(1), 402–415 (2003). MR1980100 (2004j:11009)

    Google Scholar 

  5. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J.M. Thuswaldner, Generalized radix representations and dynamical systems. I. Acta Math. Hungar. 108(3), 207–238 (2005). MR2162561 (2006i:37023)

    Google Scholar 

  6. S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner, Generalized radix representations and dynamical systems. II. Acta Arith. 121(1), 21–61 (2006). MR2216302

    Google Scholar 

  7. S. Akiyama, H. Brunotte, A. Pethő, Reducible cubic CNS polynomials. Period. Math. Hungar. 55(2), 177–183 (2007). MR2375040 (2008m:11058)

    Google Scholar 

  8. A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Hungar. 54(3–4), 237–241 (1989). MR1029085

    Google Scholar 

  9. B. Boigelot, J. Brusten, A generalization of Cobham’s theorem to automata over real numbers. Theor. Comput. Sci. 410(18), 1694–1703 (2009). MR2508527

    Google Scholar 

  10. A. Bremner, On power bases in cyclotomic number fields. J. Number Theory 28(3), 288–298 (1988). MR932377

    Google Scholar 

  11. H. Brunotte, On trinomial bases of radix representations of algebraic integers. Acta Sci. Math. (Szeged) 67(3–4), 521–527 (2001)

    Google Scholar 

  12. H. Brunotte, Characterization of CNS trinomials. Acta Sci. Math. (Szeged) 68(3–4), 673–679 (2002). MR1954540 (2003k:11157)

    Google Scholar 

  13. H. Brunotte, On cubic CNS polynomials with three real roots. Acta Sci. Math. (Szeged) 70(3–4), 495–504 (2004). MR2107523 (2005h:11055)

    Google Scholar 

  14. H. Brunotte, Symmetric CNS trinomials. Integers 9(A19), 201–214 (2009). MR2534909 (2010g:11039)

    Google Scholar 

  15. H. Brunotte, A unified proof of two classical theorems on CNS polynomials. Integers 12(4), 709–721 (2012). MR2988542

    Google Scholar 

  16. H. Brunotte, Unusual CNS polynomials. Math. Pannon. 24(1), 125–137 (2013). MR3234910

    Google Scholar 

  17. H. Brunotte, A. Huszti, A. Pethő, Bases of canonical number systems in quartic algebraic number fields. J. Théor. Nombres Bordeaux 18(3), 537–557 (2006). MR2330426 (2008g:11179)

    Google Scholar 

  18. A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata. Math. Syst. Theory 3, 186–192 (1969). MR0250789

    MathSciNet  MATH  Google Scholar 

  19. F. Durand, Cobham’s theorem for substitutions. J. Eur. Math. Soc. (JEMS) 13(6), 1799–1814 (2011). MR2835330

    Google Scholar 

  20. F. Durand, M. Rigo, On Cobham’s theorem, in Handbook of Automata: From Mathematics to Applications (European Mathematical Society Publishing House, Zurich, 2017)

    Google Scholar 

  21. S. Eilenberg, Automata, Languages, and Machines. Vol. A, Pure and Applied Mathematics, vol. 58 (Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974). MR0530382

    Google Scholar 

  22. I. Gaál, L. Robertson, Power integral bases in prime-power cyclotomic fields. J. Number Theory 120(2), 372–384 (2006). MR2257552

    Google Scholar 

  23. W.J. Gilbert, Radix representations of quadratic fields. J. Math. Anal. Appl. 83(1), 264–274 (1981). MR632342 (83m:12005)

    Google Scholar 

  24. G. Hansel, T. Safer, Vers un théorème de Cobham pour les entiers de Gauss. Bull. Belg. Math. Soc. Simon Stevin 10(Suppl.), 723–735 (2003). MR2073023 (2005c:68236)

    Google Scholar 

  25. I. Kátai, B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen. Acta Sci. Math. (Szeged) 42(1–2), 99–107 (1980). MR576942 (81i:12002)

    Google Scholar 

  26. I. Kátai, B. Kovács, Canonical number systems in imaginary quadratic fields. Acta Math. Acad. Sci. Hungar. 37(1–3), 159–164 (1981). MR616887 (83a:12005)

    Google Scholar 

  27. I. Kátai, J. Szabó, Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37(3–4), 255–260 (1975). MR0389759 (52 #10590)

    Google Scholar 

  28. S.I. Khmelnik, Specialized digital computer for operations with complex numbers. Quest. Radio Electronics XII(2) (1964), 60–82; in Russian.

    Google Scholar 

  29. P. Kirschenhofer, J.M. Thuswaldner, Shift radix systems—a survey. RIMS Kôkyûroku Bessatsu B46, 1–59 (2014). MR3330559

    Google Scholar 

  30. D.E. Knuth, A imaginary number system. CACM 3(4), 245–247 (1960)

    Article  MathSciNet  Google Scholar 

  31. D.E. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms (Addison-Wesley, Reading, 1969). MR0286318 (44 #3531)

    Google Scholar 

  32. B. Kovács, Canonical number systems in algebraic number fields. Acta Math. Acad. Sci. Hungar. 37(4), 405–407 (1981). MR619892 (82j:12014)

    Google Scholar 

  33. B. Kovács, A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged) 55(3–4), 287–299 (1991). MR1152592 (92m:11116)

    Google Scholar 

  34. B. Kovács, A. Pethő, On a representation of algebraic integers. Studia Sci. Math. Hungar. 27(1–2), 169–172 (1992). MR1207568

    Google Scholar 

  35. M.G. Madritsch, V. Ziegler, An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields. Acta Sci. Math. (Szeged) 81(1–2), 33–44 (2015). MR3381872

    Google Scholar 

  36. M.G. Madritsch, V. Ziegler, On multiplicatively independent bases in cyclotomic number fields. Acta Math. Hungar. 146(1), 224–239 (2015). MR3348190

    Google Scholar 

  37. W. Penney, A “binary” system for complex numbers. J. ACM 12(2), 247–248 (April 1965)

    Google Scholar 

  38. A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem. Computational Number Theory (Debrecen, 1989) (Walter de Gruyter, Berlin, 1991), pp. 31–43. MR1151853 (93e:94011)

    Google Scholar 

  39. A. Pethő, R.F. Tichy, S-unit equations, linear recurrences and digit expansions. Publ. Math. Debr. 42(1–2), 145–154 (1993). MR1208858

    Google Scholar 

  40. G. Ranieri, Générateurs de l’anneau des entiers d’une extension cyclotomique. J. Number Theory 128(6), 1576–1586 (2008). MR2419179

    Google Scholar 

  41. L. Robertson, Power bases for cyclotomic integer rings. J. Number Theory 69(1), 98–118 (1998). MR1611089

    Google Scholar 

  42. L. Robertson, Power bases for 2-power cyclotomic fields. J. Number Theory 88(1), 196–209 (2001). MR1825999

    Google Scholar 

  43. L. Robertson, Monogeneity in cyclotomic fields. Int. J. Number Theory 6(7), 1589–1607 (2010). MR2740723

    Google Scholar 

  44. L. Robertson, R. Russell, A hybrid Gröbner bases approach to computing power integral bases. Acta Math. Hungar. 147(2), 427–437 (2015). MR3420587

    Google Scholar 

  45. J. Sakarovitch, Elements of Automata Theory (Cambridge University Press, Cambridge, 2009); Translated from the 2003 French original by Reuben Thomas. MR2567276

    Google Scholar 

  46. H.P. Schlickewei, Linear equations in integers with bounded sum of digits. J. Number Theory 35(3), 335–344 (1990). MR1062338

    Google Scholar 

  47. K. Scheicher, J.M. Thuswaldner, On the characterization of canonical number systems. Osaka J. Math. 41(2), 327–351 (2004). MR2069090 (2005c:11013)

    Google Scholar 

  48. K. Scheicher, P. Surer, J.M. Thuswaldner, C.E. van de Woestijne, Digit systems over commutative rings. Int. J. Number Theory 10(6), 1459–1483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. H.G. Senge, E.G. Straus, PV-numbers and sets of multiplicity. Period. Math. Hungar. 3, 93–100 (1973); Collection of articles dedicated to the memory of Alfréd Rényi, II. MR0340185

    Google Scholar 

  50. C.L. Stewart, On the representation of an integer in two different bases. J. Reine Angew. Math. 319, 63–72 (1980). MR586115

    MathSciNet  Google Scholar 

  51. M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 326 (Springer, Berlin, 2000); Transcendence properties of the exponential function in several variables. MR1756786

    Google Scholar 

Download references

Acknowledgements

We want to explicitly give thanks to the anonymous referees. Due to their hints and suggestions we were able to improve a lot the quality and readability of this article. The second author’s research was supported by the Austrian Research Foundation (FWF), Project P23990.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred G. Madritsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Madritsch, M.G., Surer, P., Ziegler, V. (2017). On Multiplicative Independent Bases for Canonical Number Systems in Cyclotomic Number Fields. In: Elsholtz, C., Grabner, P. (eds) Number Theory – Diophantine Problems, Uniform Distribution and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55357-3_16

Download citation

Publish with us

Policies and ethics